File size: 10,094 Bytes
f1d8127 4e66f95 a9f7f5e f29cd95 8398580 f1d8127 11608ea f1d8127 d109f0a f1d8127 11608ea ee0199f 11608ea f1d8127 11608ea ee0199f f1d8127 4e66f95 11608ea ee0199f 4e66f95 d109f0a f1d8127 c62ee55 f1d8127 c62ee55 f1d8127 4e66f95 f1d8127 11608ea ee0199f f1d8127 4e66f95 35723bb 4e66f95 11608ea ee0199f 4e66f95 3a81b9e 5279027 4e66f95 b706fa9 8dd7ef6 b706fa9 43f615c b706fa9 43f615c b706fa9 43f615c b706fa9 f29cd95 55814a3 f29cd95 972c6e1 4e66f95 b706fa9 f1d8127 b706fa9 972c6e1 b706fa9 972c6e1 f1d8127 2d696dd 1c49695 f1d8127 4e66f95 f1d8127 972c6e1 f1d8127 857eed2 2d696dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Patch
import io
from PIL import Image, ImageDraw
import numpy as np
import csv
import pandas as pd
from torchvision import transforms
from transformers import AutoModelForObjectDetection
import torch
import easyocr
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
class MaxResize(object):
def __init__(self, max_size=800):
self.max_size = max_size
def __call__(self, image):
width, height = image.size
current_max_size = max(width, height)
scale = self.max_size / current_max_size
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
return resized_image
detection_transform = transforms.Compose([
MaxResize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
structure_transform = transforms.Compose([
MaxResize(1000),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# load table detection model
# processor = TableTransformerImageProcessor(max_size=800)
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm").to(device)
# load table structure recognition model
# structure_processor = TableTransformerImageProcessor(max_size=1000)
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(device)
# load EasyOCR reader
reader = easyocr.Reader(['en'])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
width, height = size
boxes = box_cxcywh_to_xyxy(out_bbox)
boxes = boxes * torch.tensor([width, height, width, height], dtype=torch.float32)
return boxes
def outputs_to_objects(outputs, img_size, id2label):
m = outputs.logits.softmax(-1).max(-1)
pred_labels = list(m.indices.detach().cpu().numpy())[0]
pred_scores = list(m.values.detach().cpu().numpy())[0]
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]
objects = []
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
class_label = id2label[int(label)]
if not class_label == 'no object':
objects.append({'label': class_label, 'score': float(score),
'bbox': [float(elem) for elem in bbox]})
return objects
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
image = Image.open(buf)
return image
def visualize_detected_tables(img, det_tables):
plt.imshow(img, interpolation="lanczos")
fig = plt.gcf()
fig.set_size_inches(20, 20)
ax = plt.gca()
for det_table in det_tables:
bbox = det_table['bbox']
if det_table['label'] == 'table':
facecolor = (1, 0, 0.45)
edgecolor = (1, 0, 0.45)
alpha = 0.3
linewidth = 2
hatch='//////'
elif det_table['label'] == 'table rotated':
facecolor = (0.95, 0.6, 0.1)
edgecolor = (0.95, 0.6, 0.1)
alpha = 0.3
linewidth = 2
hatch='//////'
else:
continue
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor='none',facecolor=facecolor, alpha=0.1)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth,
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha)
ax.add_patch(rect)
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0,
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2)
ax.add_patch(rect)
plt.xticks([], [])
plt.yticks([], [])
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45),
label='Table', hatch='//////', alpha=0.3),
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1),
label='Table (rotated)', hatch='//////', alpha=0.3)]
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0,
fontsize=10, ncol=2)
plt.gcf().set_size_inches(10, 10)
plt.axis('off')
return fig
def detect_and_crop_table(image):
# prepare image for the model
# pixel_values = processor(image, return_tensors="pt").pixel_values
pixel_values = detection_transform(image).unsqueeze(0).to(device)
# forward pass
with torch.no_grad():
outputs = model(pixel_values)
# postprocess to get detected tables
id2label = model.config.id2label
id2label[len(model.config.id2label)] = "no object"
detected_tables = outputs_to_objects(outputs, image.size, id2label)
# visualize
# fig = visualize_detected_tables(image, detected_tables)
# image = fig2img(fig)
# crop first detected table out of image
cropped_table = image.crop(detected_tables[0]["bbox"])
return cropped_table
def recognize_table(image):
# prepare image for the model
# pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values
pixel_values = structure_transform(image).unsqueeze(0).to(device)
# forward pass
with torch.no_grad():
outputs = structure_model(pixel_values)
# postprocess to get individual elements
id2label = structure_model.config.id2label
id2label[len(structure_model.config.id2label)] = "no object"
cells = outputs_to_objects(outputs, image.size, id2label)
# visualize cells on cropped table
draw = ImageDraw.Draw(image)
for cell in cells:
draw.rectangle(cell["bbox"], outline="red")
return image, cells
def get_cell_coordinates_by_row(table_data):
# Extract rows and columns
rows = [entry for entry in table_data if entry['label'] == 'table row']
columns = [entry for entry in table_data if entry['label'] == 'table column']
# Sort rows and columns by their Y and X coordinates, respectively
rows.sort(key=lambda x: x['bbox'][1])
columns.sort(key=lambda x: x['bbox'][0])
# Function to find cell coordinates
def find_cell_coordinates(row, column):
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]]
return cell_bbox
# Generate cell coordinates and count cells in each row
cell_coordinates = []
for row in rows:
row_cells = []
for column in columns:
cell_bbox = find_cell_coordinates(row, column)
row_cells.append({'column': column['bbox'], 'cell': cell_bbox})
# Sort cells in the row by X coordinate
row_cells.sort(key=lambda x: x['column'][0])
# Append row information to cell_coordinates
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)})
# Sort rows from top to bottom
cell_coordinates.sort(key=lambda x: x['row'][1])
return cell_coordinates
def apply_ocr(cell_coordinates, cropped_table):
# let's OCR row by row
data = dict()
max_num_columns = 0
for idx, row in enumerate(cell_coordinates):
row_text = []
for cell in row["cells"]:
# crop cell out of image
cell_image = np.array(cropped_table.crop(cell["cell"]))
# apply OCR
result = reader.readtext(np.array(cell_image))
if len(result) > 0:
text = " ".join([x[1] for x in result])
row_text.append(text)
if len(row_text) > max_num_columns:
max_num_columns = len(row_text)
data[str(idx)] = row_text
# pad rows which don't have max_num_columns elements
# to make sure all rows have the same number of columns
for idx, row_data in data.copy().items():
if len(row_data) != max_num_columns:
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))]
data[str(idx)] = row_data
# write to csv
with open('output.csv','w') as result_file:
wr = csv.writer(result_file, dialect='excel')
for row, row_text in data.items():
wr.writerow(row_text)
# return as Pandas dataframe
df = pd.read_csv('output.csv')
return df, data
def process_pdf(image):
cropped_table = detect_and_crop_table(image)
image, cells = recognize_table(cropped_table)
cell_coordinates = get_cell_coordinates_by_row(cells)
df, data = apply_ocr(cell_coordinates, image)
return image, df, data
title = "Sheriff's Demo on Table Detection & Recognition with MS TATR"
description = """<h2>Sherif's Demo for table extraction with the Table Transformer.
<li>First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection,
<li>after which the detected table is extracted and
https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all recognizes the individual rows, columns and cells.
<li>OCR is then performed per cell, row by row."""
examples = [['image.png'], ['mistral_paper.png']]
app = gr.Interface(fn=process_pdf,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil", label="Detected table"), gr.Dataframe(label="Table as CSV"), gr.JSON(label="Data as JSON")],
title=title,
description=description,
examples=examples)
app.queue()
app.launch(debug=True, share=True)
|