File size: 1,406 Bytes
de07127
 
e6f4bc9
79f46c8
256b607
2f1b912
b4725a8
de07127
8a965da
 
de07127
8a965da
79f46c8
2996449
decc59e
664eb76
5625d5f
90d7b9b
0b5b7f4
8a965da
 
3b57b43
3826e01
973bb39
62ac43e
 
dca4d0e
 
db75012
b4725a8
 
eec6bed
b4725a8
db75012
b4725a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os 
import sys 
os.system("pip install transformers==4.27.0")
os.system("pip install torch")
os.system("pip install openai")
os.system("pip install accelerate")
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor, AutoProcessor, WhisperConfig
os.system("pip install evaluate")
#import evaluate
#os.system("pip install evaluate[evaluator]")
os.system("pip install datasets")
# os.system("pip install llvmlite")
os.system("pip install spicy==1.8.1")
os.system("pip install soundfile")
os.system("pip install jiwer")
os.system("pip install datasets[audio]")
os.system("pip install numba==0.51.2")
import torch
from evaluate import evaluator
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled

set_caching_enabled(False)
disable_caching()

huggingface_token = os.environ["huggingface_token"]

model = WhisperModel.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
feature_extractor = AutoFeatureExtractor.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)

model_config = WhisperConfig.from_pretrained("mskov/whisper_miso", use_auth_token=huggingface_token)
model = WhisperModel(config=model_config)
model.load_state_dict(torch.load("mskov/whisper_miso"))
model.eval()

dataset = load_dataset("mskov/miso_test", split="test").cast_column("audio", Audio())
print(dataset)