lterriel's picture
clean & refactor components + add doc
74e2066
# -*- coding:utf-8 -*-
"""Collection of statistics functions.
"""
import numpy as np
def percentage_agreement_pov(total_pov: int, total_annotations: int) -> float:
"""Computes a percentage
:param total_pov: total agree/disagree annotations
:type total_pov: int
:param total_annotations: total annotations in project
:type total_annotations: int
:rtype: float
:return: agreement percentage
"""
return round((total_pov / total_annotations) * 100, 2)
def fleiss_kappa_function(matrix: list) -> float:
"""Computes Fleiss' kappa for group of annotators.
:param matrix: a matrix of shape (:attr:'N', :attr:'k') with
'N' = number of subjects and 'k' = the number of categories.
'M[i, j]' represent the number of raters who assigned
the 'i'th subject to the 'j'th category.
:type matrix: numpy matrix
:rtype: float
:return: Fleiss' kappa score
"""
N, _ = matrix.shape # N is # of items, k is # of categories
n_annotators = float(np.sum(matrix[0, :])) # # of annotators
tot_annotations = N * n_annotators # the total # of annotations
category_sum = np.sum(matrix, axis=0) # the sum of each category over all items
# chance agreement
p = category_sum / tot_annotations # the distribution of each category over all annotations
PbarE = np.sum(p * p) # average chance agreement over all categories
# observed agreement
P = (np.sum(matrix * matrix, axis=1) - n_annotators) / (n_annotators * (n_annotators - 1))
Pbar = np.sum(P) / N
# add all observed agreement
# chances per item and divide by amount of items
return round((Pbar - PbarE) / (1 - PbarE), 4)
def cohen_kappa_function(ann1: list, ann2: list) -> float:
"""Computes Cohen kappa for pair-wise annotators.
:param ann1: annotations provided by first annotator
:type ann1: list
:param ann2: annotations provided by second annotator
:type ann2: list
:rtype: float
:return: Cohen kappa statistic
"""
count = 0
for an1, an2 in zip(ann1, ann2):
if an1 == an2:
count += 1
A = count / len(ann1) # observed agreement A (Po)
uniq = set(ann1 + ann2)
E = 0 # expected agreement E (Pe)
for item in uniq:
cnt1 = ann1.count(item)
cnt2 = ann2.count(item)
count = (cnt1 / len(ann1)) * (cnt2 / len(ann2))
E += count
return round((A - E) / (1 - E), 4)