Files changed (1) hide show
  1. app.py +119 -124
app.py CHANGED
@@ -1,70 +1,10 @@
1
- """ Simple Chatbot
2
- @author: Nigel Gebodh
3
- @email: [email protected]
4
-
5
- """
6
-
7
  import streamlit as st
8
- from openai import OpenAI
 
9
  import os
10
- import sys
11
- from dotenv import load_dotenv, dotenv_values
12
- load_dotenv()
13
-
14
-
15
-
16
-
17
-
18
- # initialize the client
19
- client = OpenAI(
20
- base_url="https://api-inference.huggingface.co/v1",
21
- api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
22
- )
23
-
24
-
25
-
26
 
27
- #Create supported models
28
- model_links ={
29
- "Mistral":"mistralai/Mistral-7B-Instruct-v0.2",
30
- "Gemma-7B":"google/gemma-7b-it",
31
- "Gemma-2B":"google/gemma-2b-it",
32
- "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
33
-
34
- }
35
-
36
- #Pull info about the model to display
37
- model_info ={
38
- "Mistral":
39
- {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
40
- \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
41
- 'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
42
- "Gemma-7B":
43
- {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
44
- \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""",
45
- 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
46
- "Gemma-2B":
47
- {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
48
- \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
49
- 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
50
- "Zephyr-7B":
51
- {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
52
- \nFrom Huggingface: \n\
53
- Zephyr is a series of language models that are trained to act as helpful assistants. \
54
- [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
55
- is the third model in the series, and is a fine-tuned version of google/gemma-7b \
56
- that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
57
- 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
58
- "Zephyr-7B-β":
59
- {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
60
- \nFrom Huggingface: \n\
61
- Zephyr is a series of language models that are trained to act as helpful assistants. \
62
- [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
63
- is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
64
- that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
65
- 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
66
-
67
- }
68
 
69
  def reset_conversation():
70
  '''
@@ -73,25 +13,112 @@ def reset_conversation():
73
  st.session_state.conversation = []
74
  st.session_state.messages = []
75
  return None
76
-
77
-
78
-
79
-
80
- # Define the available models
81
- models =[key for key in model_links.keys()]
82
-
83
- # Create the sidebar with the dropdown for model selection
84
- selected_model = st.sidebar.selectbox("Select Model", models)
85
 
86
- #Create a temperature slider
87
- temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
88
-
89
-
90
- #Add reset button to clear conversation
91
- st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
 
 
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- # Create model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  st.sidebar.write(f"You're now chatting with **{selected_model}**")
96
  st.sidebar.markdown(model_info[selected_model]['description'])
97
  st.sidebar.image(model_info[selected_model]['logo'])
@@ -99,65 +126,33 @@ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
99
  st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
100
  st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).")
101
 
102
-
103
-
104
-
105
- if "prev_option" not in st.session_state:
106
- st.session_state.prev_option = selected_model
107
-
108
- if st.session_state.prev_option != selected_model:
109
- st.session_state.messages = []
110
- # st.write(f"Changed to {selected_model}")
111
- st.session_state.prev_option = selected_model
112
- reset_conversation()
113
-
114
-
115
-
116
- #Pull in the model we want to use
117
- repo_id = model_links[selected_model]
118
-
119
-
120
- st.subheader(f'AI - {selected_model}')
121
- # st.title(f'ChatBot Using {selected_model}')
122
-
123
- # Set a default model
124
- if selected_model not in st.session_state:
125
- st.session_state[selected_model] = model_links[selected_model]
126
-
127
  # Initialize chat history
128
  if "messages" not in st.session_state:
129
  st.session_state.messages = []
130
 
131
-
132
  # Display chat messages from history on app rerun
133
  for message in st.session_state.messages:
134
  with st.chat_message(message["role"]):
135
  st.markdown(message["content"])
136
 
137
-
138
-
139
  # Accept user input
140
- if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
141
-
142
  # Display user message in chat message container
143
  with st.chat_message("user"):
144
  st.markdown(prompt)
145
  # Add user message to chat history
146
- st.session_state.messages.append({"role": "user", "content": prompt})
147
 
 
 
 
 
 
148
 
149
  # Display assistant response in chat message container
150
  with st.chat_message("assistant"):
151
- stream = client.chat.completions.create(
152
- model=model_links[selected_model],
153
- messages=[
154
- {"role": m["role"], "content": m["content"]}
155
- for m in st.session_state.messages
156
- ],
157
- temperature=temp_values,#0.5,
158
- stream=True,
159
- max_tokens=3000,
160
- )
161
-
162
- response = st.write_stream(stream)
163
- st.session_state.messages.append({"role": "assistant", "content": response})
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import requests
3
+ import json
4
  import os
5
+ from dotenv import load_dotenv
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ load_dotenv()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def reset_conversation():
10
  '''
 
13
  st.session_state.conversation = []
14
  st.session_state.messages = []
15
  return None
 
 
 
 
 
 
 
 
 
16
 
17
+ # Define model links for Hugging Face models
18
+ model_links = {
19
+ "Mistral": "mistralai/Mistral-7B-Instruct-v0.2",
20
+ "Gemma-7B": "google/gemma-7b-it",
21
+ "Gemma-2B": "google/gemma-2b-it",
22
+ "Zephyr-7B-β": "HuggingFaceH4/zephyr-7b-beta",
23
+ "Nous-Hermes-2-Yi-34B": "NousResearch/Nous-Hermes-2-Yi-34B"
24
+ }
25
 
26
+ # Define model info for all models
27
+ model_info = {
28
+ "Mistral": {
29
+ 'description': "The Mistral model is a Large Language Model (LLM) developed by Mistral AI.",
30
+ 'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'
31
+ },
32
+ "Gemma-7B": {
33
+ 'description': "The Gemma-7B model is a Large Language Model (LLM) developed by Google with 7 billion parameters.",
34
+ 'logo': 'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'
35
+ },
36
+ "Gemma-2B": {
37
+ 'description': "The Gemma-2B model is a Large Language Model (LLM) developed by Google with 2 billion parameters.",
38
+ 'logo': 'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'
39
+ },
40
+ "Zephyr-7B-β": {
41
+ 'description': "The Zephyr-7B-β model is a Large Language Model (LLM) developed by HuggingFace.",
42
+ 'logo': 'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'
43
+ },
44
+ "Nous-Hermes-2-Yi-34B": {
45
+ 'description': "The Nous Hermes model is a Large Language Model (LLM) developed by Nous Research with 34 billion parameters.",
46
+ 'logo': 'https://example.com/nous_hermes_logo.png'
47
+ }
48
+ }
49
 
50
+ # Function to interact with Hugging Face models
51
+ def interact_with_huggingface_model(messages, model):
52
+ # Add your code here to interact with the Hugging Face model
53
+ pass
54
+
55
+ # Function to interact with the Together API model
56
+ def interact_with_together_api(messages):
57
+ all_messages = []
58
+
59
+ if not messages: # If history is empty
60
+ all_messages.append({"role": "user", "content": ""})
61
+ history = [("", "")] # Add dummy values to prevent unpacking error
62
+
63
+ for human, assistant in messages:
64
+ all_messages.append({"role": "user", "content": human})
65
+ all_messages.append({"role": "assistant", "content": assistant})
66
+
67
+ all_messages.append({"role": "user", "content": messages[-1][1]})
68
+
69
+ url = "https://api.together.xyz/v1/chat/completions"
70
+ payload = {
71
+ "model": "NousResearch/Nous-Hermes-2-Yi-34B",
72
+ "temperature": 1.05,
73
+ "top_p": 0.9,
74
+ "top_k": 50,
75
+ "repetition_penalty": 1,
76
+ "n": 1,
77
+ "messages": all_messages,
78
+ "stream_tokens": True,
79
+ }
80
+
81
+ TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
82
+ headers = {
83
+ "accept": "application/json",
84
+ "content-type": "application/json",
85
+ "Authorization": f"Bearer {TOGETHER_API_KEY}",
86
+ }
87
+
88
+ response = requests.post(url, json=payload, headers=headers, stream=True)
89
+ response.raise_for_status() # Ensure HTTP request was successful
90
+
91
+ for line in response.iter_lines():
92
+ if line:
93
+ decoded_line = line.decode('utf-8')
94
+
95
+ # Check for the completion signal
96
+ if decoded_line == "data: [DONE]":
97
+ yield entire_assistant_response # Yield the entire response at the end
98
+ break
99
+
100
+ try:
101
+ # Decode and strip any SSE format specific prefix ("data: ")
102
+ if decoded_line.startswith("data: "):
103
+ decoded_line = decoded_line.replace("data: ", "")
104
+ chunk_data = json.loads(decoded_line)
105
+ content = chunk_data['choices'][0]['delta']['content']
106
+ entire_assistant_response += content # Aggregate content
107
+ yield entire_assistant_response
108
+
109
+ except json.JSONDecodeError:
110
+ print(f"Invalid JSON received: {decoded_line}")
111
+ continue
112
+ except KeyError as e:
113
+ print(f"KeyError encountered: {e}")
114
+ continue
115
+
116
+ # Create sidebar with model selection dropdown and temperature slider
117
+ selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
118
+ temperature = st.sidebar.slider('Select Temperature', 0.0, 1.0, 0.5)
119
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
120
+
121
+ # Display model description and logo
122
  st.sidebar.write(f"You're now chatting with **{selected_model}**")
123
  st.sidebar.markdown(model_info[selected_model]['description'])
124
  st.sidebar.image(model_info[selected_model]['logo'])
 
126
  st.sidebar.markdown("\nLearn how to build this chatbot [here](https://ngebodh.github.io/projects/2024-03-05/).")
127
  st.sidebar.markdown("\nRun into issues? Try the [back-up](https://huggingface.co/spaces/ngebodh/SimpleChatbot-Backup).")
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  # Initialize chat history
130
  if "messages" not in st.session_state:
131
  st.session_state.messages = []
132
 
 
133
  # Display chat messages from history on app rerun
134
  for message in st.session_state.messages:
135
  with st.chat_message(message["role"]):
136
  st.markdown(message["content"])
137
 
 
 
138
  # Accept user input
139
+ if prompt := st.chat_input(f"Hi, I'm {selected_model}, ask me a question"):
 
140
  # Display user message in chat message container
141
  with st.chat_message("user"):
142
  st.markdown(prompt)
143
  # Add user message to chat history
144
+ st.session_state.messages.append(("user", prompt))
145
 
146
+ # Interact with selected model
147
+ if selected_model == "Nous-Hermes-2-Yi-34B":
148
+ stream = interact_with_together_api(st.session_state.messages)
149
+ else:
150
+ interact_with_huggingface_model(st.session_state.messages, model_links[selected_model])
151
 
152
  # Display assistant response in chat message container
153
  with st.chat_message("assistant"):
154
+ response = ""
155
+ for chunk in stream:
156
+ response = chunk
157
+ st.markdown(response)
158
+ st.session_state.messages.append(("assistant", response))