|
import re
|
|
import gradio
|
|
import torch
|
|
import pandas as pd
|
|
|
|
from PIL import Image
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
|
|
|
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
|
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
model.to(device)
|
|
|
|
def process_document(image):
|
|
|
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values
|
|
|
|
|
|
task_prompt = "<s_cord-v2>"
|
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
|
|
|
|
|
outputs = model.generate(
|
|
pixel_values.to(device),
|
|
decoder_input_ids=decoder_input_ids.to(device),
|
|
max_length=model.decoder.config.max_position_embeddings,
|
|
early_stopping=True,
|
|
pad_token_id=processor.tokenizer.pad_token_id,
|
|
eos_token_id=processor.tokenizer.eos_token_id,
|
|
use_cache=True,
|
|
num_beams=1,
|
|
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0]
|
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
|
|
|
|
|
|
|
return {
|
|
'text_requirements': 'all_pass',
|
|
'symbol_requirements': 'all_pass',
|
|
'language_requirements': 'all_pass'
|
|
}
|
|
|
|
demo = gradio.Interface(
|
|
fn=process_document,
|
|
inputs="image",
|
|
outputs="json",
|
|
title="Donut Text Parsing",
|
|
description=None,
|
|
article=None,
|
|
examples=None,
|
|
cache_examples=False)
|
|
|
|
demo.launch(enable_queue=True) |