Spaces:
Building
on
A100
Building
on
A100
configmyconfig
#3
by
nroggendorff
- opened
train.py
CHANGED
@@ -21,33 +21,56 @@ handler = StreamHandler()
|
|
21 |
logger.addHandler(handler)
|
22 |
|
23 |
class Config:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
class Space:
|
53 |
def __init__(self):
|
@@ -71,14 +94,14 @@ def encode_decode(texts, tokenizer):
|
|
71 |
if tokenizer.pad_token is None:
|
72 |
tokenizer.pad_token = tokenizer.eos_token
|
73 |
tokenized_texts = tokenizer(
|
74 |
-
texts, padding="max_length", truncation=True, max_length=
|
75 |
).input_ids
|
76 |
-
return tokenizer.batch_decode(tokenized_texts) if tokenized_texts.dim() >= 1 else [tokenizer.pad_token *
|
77 |
|
78 |
def create_tokenizer(training_corpus):
|
79 |
tokenizer = ByteLevelBPETokenizer()
|
80 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
81 |
-
tokenizer.train_from_iterator(training_corpus, vocab_size=
|
82 |
return PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
83 |
|
84 |
def load_tokenizer(repo: str):
|
@@ -111,11 +134,11 @@ def format_prompts(examples, tokenizer, is_instructional):
|
|
111 |
def create_model(tokenizer):
|
112 |
config = LlamaConfig(
|
113 |
vocab_size=tokenizer.vocab_size,
|
114 |
-
hidden_size=
|
115 |
-
intermediate_size=
|
116 |
num_hidden_layers=12,
|
117 |
num_attention_heads=12,
|
118 |
-
max_position_embeddings=
|
119 |
rms_norm_eps=1e-5,
|
120 |
initializer_range=0.02,
|
121 |
use_cache=True,
|
@@ -127,20 +150,7 @@ def create_model(tokenizer):
|
|
127 |
return LlamaForCausalLM(config)
|
128 |
|
129 |
def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
|
130 |
-
config =
|
131 |
-
output_dir="model",
|
132 |
-
num_train_epochs=Config.EPOCHS,
|
133 |
-
per_device_train_batch_size=Config.BATCH_SIZE,
|
134 |
-
learning_rate=Config.LEARNING_RATE,
|
135 |
-
warmup_steps=Config.WARMUP_STEPS,
|
136 |
-
weight_decay=Config.WEIGHT_DECAY,
|
137 |
-
gradient_accumulation_steps=Config.GRADIENT_ACCUMULATION_STEPS,
|
138 |
-
fp16=Config.FP16,
|
139 |
-
save_steps=int(Config.WARMUP_STEPS * 5),
|
140 |
-
logging_steps=int(Config.WARMUP_STEPS),
|
141 |
-
save_total_limit=2,
|
142 |
-
report_to="none",
|
143 |
-
)
|
144 |
dataset = dataset.map(
|
145 |
lambda examples: format_prompts(examples, tokenizer, is_instructional),
|
146 |
batched=True,
|
@@ -155,7 +165,7 @@ def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
|
|
155 |
train_result = trainer.train()
|
156 |
|
157 |
if push_to_hub:
|
158 |
-
repo_id =
|
159 |
trainer.model.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
|
160 |
trainer.tokenizer.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
|
161 |
else:
|
@@ -163,18 +173,18 @@ def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
|
|
163 |
trainer.tokenizer.save_pretrained("tokenizer")
|
164 |
|
165 |
def main():
|
166 |
-
dataset = load_data(
|
167 |
tokenizer = (
|
168 |
-
load_tokenizer(
|
169 |
-
if
|
170 |
else create_tokenizer(get_training_corpus(dataset))
|
171 |
)
|
172 |
model = (
|
173 |
load_model()
|
174 |
-
if
|
175 |
else create_model(tokenizer)
|
176 |
)
|
177 |
-
train_model(model, tokenizer, dataset,
|
178 |
|
179 |
if __name__ == "__main__":
|
180 |
try:
|
|
|
21 |
logger.addHandler(handler)
|
22 |
|
23 |
class Config:
|
24 |
+
def __init__(self):
|
25 |
+
# Model and training hyperparameters
|
26 |
+
self.BATCH_SIZE = 16
|
27 |
+
self.EPOCHS = 3
|
28 |
+
self.LEARNING_RATE = 2e-4
|
29 |
+
self.MAX_SEQ_LENGTH = 512
|
30 |
+
self.VOCAB_SIZE = 32000
|
31 |
+
self.FP16 = True
|
32 |
+
self.WEIGHT_DECAY = 1e-3
|
33 |
+
self.GRADIENT_ACCUMULATION_STEPS = self.BATCH_SIZE // 4
|
34 |
+
|
35 |
+
# Dataset configurations
|
36 |
+
self.INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
|
37 |
+
self.INSTRUCT_DATASET = "nroggendorff/elephant"
|
38 |
+
self.SHARD_SIZE = int(2e+5)
|
39 |
+
|
40 |
+
# Output and repo settings
|
41 |
+
self.OUTPUT_REPO = "nroggendorff/smallama"
|
42 |
+
self.PUSH_TO_HUB = True
|
43 |
+
self.INSTRUCT_FINETUNE_BOOL = False
|
44 |
+
|
45 |
+
# Training steps and warmup
|
46 |
+
self.FACTOR = 12 ** 3 // 3
|
47 |
+
self.TOTAL_STEPS = (self.SHARD_SIZE * self.EPOCHS) // (self.BATCH_SIZE * self.GRADIENT_ACCUMULATION_STEPS)
|
48 |
+
self.WARMUP_STEPS = int(self.TOTAL_STEPS * 0.1)
|
49 |
+
|
50 |
+
# Initial state for shard offset
|
51 |
+
self.INIT = 0
|
52 |
+
|
53 |
+
# ignore
|
54 |
+
self.getConfig = lambda: self._args()
|
55 |
+
|
56 |
+
# @staticmethod
|
57 |
+
def _args(self):
|
58 |
+
return SFTConfig(
|
59 |
+
output_dir="model",
|
60 |
+
num_train_epochs=self.EPOCHS,
|
61 |
+
per_device_train_batch_size=self.BATCH_SIZE,
|
62 |
+
learning_rate=self.LEARNING_RATE,
|
63 |
+
warmup_steps=self.WARMUP_STEPS,
|
64 |
+
weight_decay=self.WEIGHT_DECAY,
|
65 |
+
gradient_accumulation_steps=self.GRADIENT_ACCUMULATION_STEPS,
|
66 |
+
fp16=self.FP16,
|
67 |
+
save_steps=int(self.WARMUP_STEPS * 5),
|
68 |
+
logging_steps=int(self.WARMUP_STEPS),
|
69 |
+
save_total_limit=2,
|
70 |
+
report_to="none",
|
71 |
+
)
|
72 |
+
|
73 |
+
config = Config().getConfig()
|
74 |
|
75 |
class Space:
|
76 |
def __init__(self):
|
|
|
94 |
if tokenizer.pad_token is None:
|
95 |
tokenizer.pad_token = tokenizer.eos_token
|
96 |
tokenized_texts = tokenizer(
|
97 |
+
texts, padding="max_length", truncation=True, max_length=config.MAX_SEQ_LENGTH, return_tensors="pt"
|
98 |
).input_ids
|
99 |
+
return tokenizer.batch_decode(tokenized_texts) if tokenized_texts.dim() >= 1 else [tokenizer.pad_token * config.MAX_SEQ_LENGTH]
|
100 |
|
101 |
def create_tokenizer(training_corpus):
|
102 |
tokenizer = ByteLevelBPETokenizer()
|
103 |
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
104 |
+
tokenizer.train_from_iterator(training_corpus, vocab_size=config.VOCAB_SIZE, min_frequency=2, special_tokens=special_tokens)
|
105 |
return PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
106 |
|
107 |
def load_tokenizer(repo: str):
|
|
|
134 |
def create_model(tokenizer):
|
135 |
config = LlamaConfig(
|
136 |
vocab_size=tokenizer.vocab_size,
|
137 |
+
hidden_size=config.FACTOR,
|
138 |
+
intermediate_size=config.FACTOR * 4,
|
139 |
num_hidden_layers=12,
|
140 |
num_attention_heads=12,
|
141 |
+
max_position_embeddings=config.MAX_SEQ_LENGTH,
|
142 |
rms_norm_eps=1e-5,
|
143 |
initializer_range=0.02,
|
144 |
use_cache=True,
|
|
|
150 |
return LlamaForCausalLM(config)
|
151 |
|
152 |
def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
|
153 |
+
config =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
dataset = dataset.map(
|
155 |
lambda examples: format_prompts(examples, tokenizer, is_instructional),
|
156 |
batched=True,
|
|
|
165 |
train_result = trainer.train()
|
166 |
|
167 |
if push_to_hub:
|
168 |
+
repo_id = config.OUTPUT_REPO + "-it" if config.INSTRUCT_FINETUNE_BOOL else config.OUTPUT_REPO
|
169 |
trainer.model.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
|
170 |
trainer.tokenizer.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
|
171 |
else:
|
|
|
173 |
trainer.tokenizer.save_pretrained("tokenizer")
|
174 |
|
175 |
def main():
|
176 |
+
dataset = load_data(config.INPUT_DATASET, "train", config.SHARD_SIZE, config.INIT)
|
177 |
tokenizer = (
|
178 |
+
load_tokenizer(config.OUTPUT_REPO)
|
179 |
+
if config.INSTRUCT_FINETUNE_BOOL and config.INIT > 0
|
180 |
else create_tokenizer(get_training_corpus(dataset))
|
181 |
)
|
182 |
model = (
|
183 |
load_model()
|
184 |
+
if config.INSTRUCT_FINETUNE_BOOL or config.INIT > 0
|
185 |
else create_model(tokenizer)
|
186 |
)
|
187 |
+
train_model(model, tokenizer, dataset, config.PUSH_TO_HUB, config.INSTRUCT_FINETUNE_BOOL)
|
188 |
|
189 |
if __name__ == "__main__":
|
190 |
try:
|