Files changed (1) hide show
  1. train.py +5 -10
train.py CHANGED
@@ -1,18 +1,14 @@
1
- import os
2
- from sys import exit
3
- import torch
4
  import trl
5
  from transformers import (
6
- AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
7
- PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
8
  )
9
  from trl import SFTConfig, SFTTrainer
10
  from datasets import load_dataset, Dataset
11
  from tokenizers import ByteLevelBPETokenizer
12
  from huggingface_hub import HfApi
13
- from torch.utils.data import DataLoader
14
  from itertools import islice
15
- from typing import Optional
16
  from logging import getLogger, StreamHandler, INFO
17
 
18
  logger = getLogger(__name__)
@@ -132,7 +128,7 @@ def format_prompts(examples, tokenizer, is_instructional):
132
  return {'text': tokenizer.code(texts)}
133
 
134
  def create_model(tokenizer):
135
- config = LlamaConfig(
136
  vocab_size=tokenizer.vocab_size,
137
  hidden_size=config.FACTOR,
138
  intermediate_size=config.FACTOR * 4,
@@ -147,10 +143,9 @@ def create_model(tokenizer):
147
  eos_token_id=tokenizer.eos_token_id,
148
  tie_word_embeddings=False,
149
  )
150
- return LlamaForCausalLM(config)
151
 
152
  def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
153
- config =
154
  dataset = dataset.map(
155
  lambda examples: format_prompts(examples, tokenizer, is_instructional),
156
  batched=True,
 
 
 
 
1
  import trl
2
  from transformers import (
3
+ AutoTokenizer, LlamaConfig, LlamaForCausalLM,
4
+ PreTrainedTokenizerFast
5
  )
6
  from trl import SFTConfig, SFTTrainer
7
  from datasets import load_dataset, Dataset
8
  from tokenizers import ByteLevelBPETokenizer
9
  from huggingface_hub import HfApi
 
10
  from itertools import islice
11
+
12
  from logging import getLogger, StreamHandler, INFO
13
 
14
  logger = getLogger(__name__)
 
128
  return {'text': tokenizer.code(texts)}
129
 
130
  def create_model(tokenizer):
131
+ model_config = LlamaConfig(
132
  vocab_size=tokenizer.vocab_size,
133
  hidden_size=config.FACTOR,
134
  intermediate_size=config.FACTOR * 4,
 
143
  eos_token_id=tokenizer.eos_token_id,
144
  tie_word_embeddings=False,
145
  )
146
+ return LlamaForCausalLM(model_config)
147
 
148
  def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
 
149
  dataset = dataset.map(
150
  lambda examples: format_prompts(examples, tokenizer, is_instructional),
151
  batched=True,