File size: 6,251 Bytes
309b3ae
18e8059
309b3ae
 
 
 
 
 
18e8059
309b3ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cef6856
309b3ae
 
 
 
 
cef6856
5a17ea7
5eb1119
cef6856
 
 
 
5a17ea7
309b3ae
cef6856
 
 
 
 
 
 
 
 
 
 
 
 
df5cff8
 
5eb1119
 
 
 
 
 
 
 
cef6856
5eb1119
 
 
fc4ec13
5eb1119
 
 
 
 
 
 
 
 
5a17ea7
 
 
 
5eb1119
 
 
 
5a17ea7
cef6856
309b3ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb1119
309b3ae
 
 
 
 
 
 
 
 
 
 
 
6b4fcfb
cef6856
309b3ae
 
5eb1119
309b3ae
 
 
 
 
 
 
 
 
 
 
54bcaed
309b3ae
 
cef6856
1c7143b
5eb1119
 
cef6856
5a17ea7
 
5eb1119
cef6856
309b3ae
 
 
a7825fb
309b3ae
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs[0]

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    
    
        
    model = DetrForObjectDetection.from_pretrained(model_name)
        

    

    image = image_input
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model)
    print(processed_outputs)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
    
    return viz_img   

xxresult=0
def detect_objects2(model_name,url_input,image_input,threshold,type2):
    
    #Extract model and feature extractor
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    
    
        
    model = DetrForObjectDetection.from_pretrained(model_name)
        

    

    image = image_input
    
    #Make prediction
    processed_outputs = make_prediction(image, feature_extractor, model)
    print(processed_outputs)
    
    #Visualize prediction
    viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)

    keep = processed_outputs["scores"] > threshold
    det_lab = processed_outputs["labels"][keep].tolist() 
    det_lab.count(1)
    if det_lab.count(1) > 0:
        total_text="Trench is Detected \n"
    else:
        total_text="Trench is NOT Detected \n"
        xxresult=1
        
    
    if det_lab.count(4) > 0:
        total_text+="Measuring Tape (Vertical) for measuring Depth is Detected \n"
    else:
        total_text+="Measuring Tape (Vertical) for measuring Depth is NOT Detected \n"
        if type2=="Trench Depth Measurement":
            xxresult=1

    if det_lab.count(5) > 0:
        total_text+="Measuring Tape (Horizontal) for measuring Width is Detected \n"
    else:
        total_text+="Measuring Tape (Horizontal) for measuring Width is NOT Detected \n"
        if type2=="Trench Width Measurement":
            xxresult=1

    return total_text
    
def tott():
    if xxresult==0:
        text2 = "The photo is ACCEPTED"
    else:
        text2 = "The photo is NOT ACCEPTED"
    return text2
    
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_url(example: list) -> dict:
    return gr.Textbox.update(value=example[0])


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
"""

models = ["omarhkh/detr-finetuned-omar8"]
types_class = ["Trench Depth Measurement", "Trench Width Measurement"]

css = '''
h1#title {
  text-align: center;
}
'''

demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    gr.Markdown(description)
    #gr.Markdown(detect_objects2)
    
    
    options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
    options2 = gr.Dropdown(choices=types_class,label='Select Classification Type',show_label=True)
    slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
    
    with gr.Tabs():
        
     
        with gr.TabItem('Image Upload'):
            with gr.Row():
                img_input = gr.Image(type='pil')
                img_output_from_upload= gr.Image(shape=(650,650))
                
            with gr.Row(): 
                example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
                
            img_but = gr.Button('Detect')

        with gr.Blocks():
            name = gr.Textbox(label="Final Result")
            output = gr.Textbox(label="Reason for the results")
            greet_btn = gr.Button("Results")
            greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input,options2], outputs=output, queue=True)
            name.change(fn=tott, inputs=[], outputs=name, queue=True)
            
            
        
    
 
    img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
    example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
    
    


    
demo.launch(enable_queue=True)