Spaces:
Runtime error
Runtime error
File size: 4,967 Bytes
309b3ae 18e8059 309b3ae 18e8059 309b3ae cef6856 309b3ae cef6856 309b3ae cef6856 309b3ae cef6856 309b3ae 54bcaed 309b3ae cef6856 309b3ae a7825fb 309b3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url_input,image_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
def detect_objects2(model_name,url_input,image_input,threshold):
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = DetrForObjectDetection.from_pretrained(model_name)
image = image_input
#Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
print(processed_outputs)
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return processed_outputs
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
"""
models = ["omarhkh/detr-finetuned-omar8"]
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(detect_objects2)
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
slider_input = gr.Slider(minimum=0.1,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
img_but = gr.Button('Detect')
with gr.Blocks() as demo:
name = gr.Textbox(label="Name")
output = gr.Textbox(label="Results")
greet_btn = gr.Button("Results")
greet_btn.click(fn=detect_objects2, inputs=[options,img_input,img_input,slider_input], outputs=output, queue=True)
img_but.click(detect_objects,inputs=[options,img_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
demo.launch(enable_queue=True) |