File size: 3,929 Bytes
15188ef
 
91d4a22
 
 
15188ef
126a4c3
d715186
126a4c3
47a8f30
 
 
 
15188ef
91d4a22
 
 
 
 
 
15188ef
91d4a22
15188ef
91d4a22
 
 
 
 
15188ef
91d4a22
 
15188ef
91d4a22
 
 
 
15188ef
91d4a22
c19bdc2
15188ef
 
 
 
91d4a22
15188ef
c19bdc2
91d4a22
15188ef
 
e697cf2
 
91d4a22
77a1b1d
15188ef
f7f1bb2
15188ef
 
91d4a22
2d11dba
 
15188ef
2d11dba
 
 
 
15188ef
2d11dba
 
 
 
 
 
 
a7cf972
e72ba15
fa30761
68618b2
649d64d
e72ba15
649d64d
91d4a22
77a1b1d
af818e2
77a1b1d
2d11dba
91d4a22
 
649d64d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
import pandas as pd
import numpy as np
from collections import defaultdict
from gradio_leaderboard import Leaderboard, SelectColumns

# Load the DataFrame from the CSV files for detailed pass@k metrics
df = pd.read_csv('results.csv')
duo_df = pd.read_csv('results_duo.csv')

# Ensure 'Model' and 'Scenario' columns are strings
df['Model'] = df['Model'].astype(str)
df['Scenario'] = df['Scenario'].astype(str)

# Function to estimate pass@k
def estimate_pass_at_k(num_samples, num_correct, k):
    def estimator(n, c, k):
        if n - c < k:
            return 1.0
        return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))

    return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)])

# Function to calculate pass@k
def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]):
    filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)]
    num_samples = filtered_df['Runs'].values
    num_correct = filtered_df['Successes'].values

    pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values}
    return pass_at_k

# Function to filter data and calculate pass@k
def filter_data(model, scenario):
    pass_at_k = calculate_pass_at_k(df, model, scenario)
    return pd.DataFrame([pass_at_k])

# Initialize the leaderboard
def init_leaderboard(dataframe, default_selection=["Model", "pass@1", "pass@5", "pass@10"], height=600):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=["markdown", "number", "number", "number"],  # Specify the types of your columns
        select_columns=SelectColumns(
            default_selection=default_selection,  # Columns to display by default
            cant_deselect=[],  # Columns that cannot be deselected
            label="Select Columns to Display:",
        ),
        search_columns=["Model"],  # Columns that can be searched
        hide_columns=[],  # Columns to hide
        filter_columns=[],  # Filters for the columns
        #bool_checkboxgroup_label="Hide models",
        interactive=False,
        height=height,
    )

# Gradio interface
#models = df['Model'].unique().tolist()
#scenarios = df['Scenario'].unique().tolist()

# Initialize leaderboard with the complete DataFrame
duo_complete_pass_at_k = duo_df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({
    'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean()
}, index=['pass@1'])).reset_index()

complete_pass_at_k = df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({
    'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(),
    'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(),
    'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean()
}, index=['pass@1', 'pass@5', 'pass@10'])).reset_index()
    
with gr.Blocks() as demo:
    gr.Markdown("# 🏆 WebApp1K Models Leaderboard")
    gr.Markdown(
        "## [Discord](https://discord.gg/3qpAbWC7) " +
        "[Papers](https://huggingface.co/onekq) " +
        "[Blog](https://huggingface.co/blog/onekq/all-llms-write-great-code) "
        "[Github](https://github.com/onekq/WebApp1k) " +
        "[AI Models](https://www.aimodels.fyi/papers/arxiv/webapp1k-practical-code-generation-benchmark-web-app)")

    gr.Markdown("# WebApp1K-Duo ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-Duo-React))")
    duo_leaderboard = init_leaderboard(duo_complete_pass_at_k, default_selection = ["Model", "pass@1"], height=400)
    gr.Markdown("# WebApp1K ([Benchmark](https://huggingface.co/datasets/onekq-ai/WebApp1K-React))")
    leaderboard = init_leaderboard(complete_pass_at_k, default_selection = [], height=800)

# Launch the Gradio interface
demo.launch()