File size: 5,675 Bytes
eb7d6fd 0b0fa8e c95b8ef e8ea911 c95b8ef 0dc87ee c95b8ef eb7d6fd e8ea911 eb7d6fd c95b8ef eb7d6fd db081ea eb7d6fd 1c36eff eb7d6fd 9850179 eb86123 eb7d6fd a4886c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
import librosa
import numpy as np
import torch
import pyewts
import noisereduce as nr
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from num2tib.core import convert
from num2tib.core import convert2text
import re
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def replace_numbers_with_convert(sentence, wylie=True):
pattern = r'\d+(\.\d+)?'
def replace(match):
return convert(match.group(), wylie)
result = re.sub(pattern, replace, sentence)
return result
converter = pyewts.pyewts()
checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
model.to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"Lhasa(female)": "female_2.npy",
}
replacements = [
('_', '_'),
('*', 'v'),
('`', ';'),
('~', ','),
('+', ','),
('\\', ';'),
('|', ';'),
('╚',''),
('╗','')
]
def cleanup_text(inputs):
for src, dst in replacements:
inputs = inputs.replace(src, dst)
return inputs
def predict(text, speaker):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
text = converter.toWylie(text)
text=cleanup_text(text)
text=replace_numbers_with_convert(text)
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions]
speaker_embedding = np.load(speaker_embeddings[speaker])
speaker_embedding = torch.tensor(speaker_embedding)
speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
return (16000, speech)
title = "Tibetan TTS"
description = """
Feedbacks: https://forms.gle/psbZnXGeBWXptkvs9
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
eprint={2110.07205},
archivePrefix={arXiv},
primaryClass={eess.AS},
year={2021}
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""
examples = [
["ད་དེ་ཚོ་འདི་བྱེད་དགོས་རེད་ ན་ཚ་ མ་ཡོང་སྔོན་ལ་ཁོ་རང་ལ་ཡང་ཁྱི་ཁོ་རང་ཁོ་ལ་ཡང་ཁབ་རྒྱག་ཡ་ཡོད་རེད། ཨུན་སྔོན་འགོག་དང་རཱབྷིསས་ཁབ་རྒྱག་ཡ་ཡོད་རེད་ད།", "Lhasa(female)"],
["སྟོབས་ཆེན་རྒྱལ་ཁབ་ཉི་ཤུའི་ལྷན་ཚོགས་ཐོག་ལ་རྒྱ་ནག་གཞུང་གིས་བོད་ནང་རིག་གཞུང་རྩ་གཏོར་ཀྱི་སྲིད་བྱུས་ཁག་དཔར་རིས་ཐོག་ནས་ལས་འགུལ་སྤེལ་བའི་སྐོར འཇམ་དབྱངས་རྒྱ་མཚོ་ལགས་ཀྱིས་སྙན་སྒྲོན་གནང་གི་རེད།", "Lhasa(female)"],
["དངོས་གནས་ལབ་དགོས་རཱ་ད། མི་དབུལ་པོ་དེ་ཚོ་ལ་ག་རེ་ལབ་དགོས་རེད། སྦྱིན་པ་གཏང་ཡ་ཡོད་རཱ། ཨུན། དེ་འདྲ་གི་ལས་འགུལ་དེ་འདྲའི་མང་པོ་བརྩམས་ཀི་འདུག་བ། དེ་ཚོ་ཡང་ངས་ཚད་ལས་བརྒལ་བའི་ཡག་པོ་རེད་དྲན་གི་འདུག། ", "Lhasa(female)"],
["ཁོང་རྣམ་པ་ནི་སྤྱིར་བཏང་གི་གང་ཟག་ཅིག་མ་ཡིན་པར་མི་རབས་ནས་མི་རབས་རྒྱུད་པ་འཛིན་པའི་ནོར་བུ་ཡིན་ཞིང་། ", "Lhasa(female)"],
["ཨ་ལེ། ཨེ་ནས་སྤྱིར་བཏང་ད་ང་ཚོ་ད་ལྟ་ཁྱེད་རང་གིས་དམིགས་ཡུལ་ད་གལ་ཆེན་པོ་བརྩིས་ནས།", "Lhasa(female)"],
["ཀུན་གླེང་གསར་འགྱུར། ༢༠༢༣་ལོའི་ཟླ་༩ ཚེས་༢༧ །", "Lhasa(female)"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"Lhasa(female)",
],
value="Lhasa(female)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch()
|