Spaces:
Runtime error
Runtime error
File size: 13,106 Bytes
1ee3bf0 c644570 1ee3bf0 a63d2a4 1ee3bf0 a63d2a4 35ffdbd d70699a 1ee3bf0 22a4ea9 33469f8 65acb9b a63d2a4 ede7254 7f96cda a63d2a4 65acb9b a63d2a4 65acb9b a63d2a4 65acb9b a63d2a4 65acb9b a63d2a4 65acb9b a63d2a4 65acb9b c7d558b 65acb9b a63d2a4 65acb9b a63d2a4 65acb9b 35ffdbd 65acb9b 35ffdbd 65acb9b 35ffdbd 1ee3bf0 22a4ea9 65acb9b cad6ebe 35ffdbd 670957e bc789e5 2e08ffe ede7254 65acb9b bc789e5 ee7e3f6 f2d65f6 ede7254 22a4ea9 2e08ffe 8603848 3c77757 a63d2a4 3c77757 efcd5c0 0de5570 670957e efcd5c0 670957e 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 22a4ea9 33469f8 22a4ea9 33469f8 1ee3bf0 22a4ea9 65acb9b 22a4ea9 65acb9b 22a4ea9 65acb9b 22a4ea9 65acb9b 22a4ea9 b92f46e 22a4ea9 bb729ac 22a4ea9 fcabde6 38e04f9 22a4ea9 38e04f9 22a4ea9 b92f46e 22a4ea9 b2c85ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
import torch
from diffuserslocal.src.diffusers import UNet2DConditionModel
from share_btn import community_icon_html, loading_icon_html, share_js
from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
from PIL import Image
import numpy as np
import cv2
from functools import partial
import tempfile
from mesh import get_mesh
device = "cuda" if torch.cuda.is_available() else "cpu"
model_arch = "zoe"
# Inpainting pipeline
unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
# Depth estimation
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
if model_arch == "midas":
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
def estimate_depth(image):
input_batch = transform(image).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=image.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
output= 65535 * (output - np.min(output))/(np.max(output) - np.min(output))
return Image.fromarray(output.astype("int32")), output.min(), output.max()
elif model_arch == "zoe":
# Zoe_N
repo = "isl-org/ZoeDepth"
model_zoe_n = torch.hub.load(repo, "ZoeD_N", pretrained=True)
zoe = model_zoe_n.to(device)
def estimate_depth(image):
depth_tensor = zoe.infer_pil(image, output_type="tensor")
output = depth_tensor.cpu().numpy()
output_ = 65535 * (1 - (output - np.min(output))/(np.max(output) - np.min(output)))
return Image.fromarray(output_.astype("int32")), output.min(), output.max()
def denormalize(image, max, min):
image = (image / 65535 - 1 ) * (min - max) + min
return image
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict_images(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
if negative_prompt == "":
negative_prompt = None
init_image = cv2.resize(dict["image"], (512, 512))
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
if (depth is None):
depth_image, _, _ = estimate_depth(init_image)
else:
d_i = depth[:,:,0]
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
depth_image = depth_image.astype("int32")
depth_image = Image.fromarray(depth_image)
init_image = Image.fromarray(init_image.astype("uint8"))
depth_image = depth_image.resize((512, 512))
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
depth_out = np.array(output.depth[0])
output_depth_vis = (depth_out - np.min(depth_out)) / (np.max(depth_out) - np.min(depth_out)) * 255
output_depth_vis = output_depth_vis.astype("uint8")
output_depth = Image.fromarray(output_depth_vis)
return output.rgb[0], output_depth, gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
def create_vis_demo():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
btn.click(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
prompt.submit(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
share_button.click(None, [], [], _js=share_js)
def predict_images_3d(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler", keep_edges=False):
if negative_prompt == "":
negative_prompt = None
init_image = cv2.resize(dict["image"], (512, 512))
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
mask.save("temp_mask.jpg")
if (depth is None):
depth_image, min, max = estimate_depth(init_image)
else:
d_i = depth[:,:,0]
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
depth_image = depth_image.astype("int32")
depth_image = Image.fromarray(depth_image)
init_image = Image.fromarray(init_image.astype("uint8"))
depth_image = depth_image.resize((512, 512))
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
depth_in = denormalize(np.array(depth_image), min, max)
depth_out = denormalize(np.array(output.depth[0]), min, max)
output_image = output.rgb[0]
input_mesh = get_mesh(depth_in,init_image, keep_edges=keep_edges)
output_mesh = get_mesh(depth_out, output_image, keep_edges=keep_edges)
return input_mesh, output_mesh, gr.update(visible=True)
def create_3d_demo():
gr.Markdown("### Image to 3D mesh")
with gr.Row():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Row() as share_btn_container:
with gr.Column():
result_og = gr.Model3D(label="original 3d reconstruction", clear_color=[
1.0, 1.0, 1.0, 1.0])
result_new = gr.Model3D(label="inpainted 3d reconstruction", clear_color=[
1.0, 1.0, 1.0, 1.0])
submit = gr.Button("Submit")
submit.click(fn=predict_images_3d, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler, checkbox], outputs=[result_og, result_new, share_btn_container], api_name='run')
with image_blocks as demo:
with gr.Tab("Image", default=True):
create_vis_demo()
with gr.Tab("3D"):
create_3d_demo()
gr.HTML(read_content("header.html"))
image_blocks.queue(max_size=25).launch() |