File size: 13,106 Bytes
1ee3bf0
c644570
1ee3bf0
a63d2a4
1ee3bf0
a63d2a4
 
35ffdbd
d70699a
1ee3bf0
22a4ea9
 
 
 
 
33469f8
65acb9b
a63d2a4
ede7254
7f96cda
a63d2a4
 
 
 
 
 
 
 
65acb9b
 
a63d2a4
65acb9b
 
a63d2a4
65acb9b
a63d2a4
65acb9b
 
 
 
 
 
 
a63d2a4
65acb9b
 
a63d2a4
65acb9b
 
 
 
 
 
c7d558b
65acb9b
a63d2a4
65acb9b
 
 
a63d2a4
 
65acb9b
 
 
 
 
35ffdbd
65acb9b
35ffdbd
65acb9b
 
 
 
 
 
 
 
 
 
35ffdbd
1ee3bf0
 
 
 
 
 
 
 
22a4ea9
65acb9b
cad6ebe
 
35ffdbd
670957e
bc789e5
2e08ffe
 
ede7254
65acb9b
bc789e5
ee7e3f6
f2d65f6
 
 
 
ede7254
22a4ea9
2e08ffe
8603848
3c77757
a63d2a4
3c77757
efcd5c0
0de5570
 
670957e
 
efcd5c0
670957e
1ee3bf0
 
 
33469f8
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee3bf0
 
33469f8
22a4ea9
 
33469f8
22a4ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
1ee3bf0
 
22a4ea9
65acb9b
22a4ea9
 
 
 
 
 
 
 
 
 
65acb9b
22a4ea9
 
 
 
 
 
 
 
 
 
 
 
 
65acb9b
 
 
22a4ea9
 
65acb9b
 
22a4ea9
b92f46e
22a4ea9
bb729ac
22a4ea9
 
 
fcabde6
38e04f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a4ea9
38e04f9
 
 
 
 
 
 
 
22a4ea9
 
b92f46e
22a4ea9
 
 
 
 
 
 
 
 
 
 
b2c85ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import gradio as gr
import torch

from diffuserslocal.src.diffusers import UNet2DConditionModel
from share_btn import community_icon_html, loading_icon_html, share_js
from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
from PIL import Image
import numpy as np
import cv2

from functools import partial
import tempfile

from mesh import get_mesh

device = "cuda" if torch.cuda.is_available() else "cpu"
model_arch = "zoe"
# Inpainting pipeline


unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)

# Depth estimation
model_type = "DPT_Large"     # MiDaS v3 - Large     (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid"   # MiDaS v3 - Hybrid    (medium accuracy, medium inference speed)
#model_type = "MiDaS_small"  # MiDaS v2.1 - Small   (lowest accuracy, highest inference speed)

if model_arch == "midas":
    midas = torch.hub.load("intel-isl/MiDaS", model_type)

    midas.to(device)
    midas.eval()

    midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

    if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
        transform = midas_transforms.dpt_transform
    else:
        transform = midas_transforms.small_transform
    
    def estimate_depth(image):
        input_batch = transform(image).to(device)

        with torch.no_grad():
            prediction = midas(input_batch)

            prediction = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=image.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()

        output = prediction.cpu().numpy()

        output= 65535 * (output - np.min(output))/(np.max(output) - np.min(output))
        
        return Image.fromarray(output.astype("int32")), output.min(), output.max()


elif model_arch == "zoe":
    # Zoe_N
    repo = "isl-org/ZoeDepth"
    model_zoe_n = torch.hub.load(repo, "ZoeD_N", pretrained=True)
    zoe = model_zoe_n.to(device)

    def estimate_depth(image):

        depth_tensor = zoe.infer_pil(image, output_type="tensor")
        output = depth_tensor.cpu().numpy()

        output_ = 65535 * (1 - (output - np.min(output))/(np.max(output) - np.min(output)))
        
        return Image.fromarray(output_.astype("int32")), output.min(), output.max()

def denormalize(image, max, min):
    image =  (image / 65535 - 1 ) * (min - max) + min
    return image

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict_images(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):

    if negative_prompt == "":
        negative_prompt = None

    init_image = cv2.resize(dict["image"], (512, 512))

    mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])

    if (depth is None):
        depth_image, _, _ = estimate_depth(init_image)
        
    else:
        d_i = depth[:,:,0]
        depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
        depth_image = depth_image.astype("int32")
        depth_image = Image.fromarray(depth_image)

    init_image = Image.fromarray(init_image.astype("uint8"))    
    
    depth_image = depth_image.resize((512, 512))
    
    output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
    
    depth_out = np.array(output.depth[0])

    output_depth_vis = (depth_out - np.min(depth_out)) / (np.max(depth_out) - np.min(depth_out)) * 255
    output_depth_vis = output_depth_vis.astype("uint8")
    output_depth = Image.fromarray(output_depth_vis)

    return output.rgb[0], output_depth, gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")

def create_vis_demo():
    with gr.Row():
        with gr.Column():
            image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
            depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
            
            with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
                with gr.Row():
                    prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                    btn = gr.Button("Inpaint!", elem_id="run_button")
            
            with gr.Accordion(label="Advanced Settings", open=False):
                with gr.Row(mobile_collapse=False, equal_height=True):
                    guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
                    steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
                    strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
                    negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
                with gr.Row(mobile_collapse=False, equal_height=True):
                    schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
                    scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
                
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img", height=400)
            depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)

            with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)

    btn.click(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
    prompt.submit(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
    share_button.click(None, [], [], _js=share_js)




def predict_images_3d(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler", keep_edges=False):
    if negative_prompt == "":
        negative_prompt = None

    init_image = cv2.resize(dict["image"], (512, 512))

    mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
    mask.save("temp_mask.jpg")

    if (depth is None):
        depth_image, min, max = estimate_depth(init_image)
        
    else:
        d_i = depth[:,:,0]
        depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
        depth_image = depth_image.astype("int32")
        depth_image = Image.fromarray(depth_image)

    init_image = Image.fromarray(init_image.astype("uint8"))    
    
    depth_image = depth_image.resize((512, 512))
    
    output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
    
    depth_in = denormalize(np.array(depth_image), min, max)
    depth_out = denormalize(np.array(output.depth[0]), min, max)
    
    output_image = output.rgb[0]

    input_mesh = get_mesh(depth_in,init_image, keep_edges=keep_edges)
    output_mesh = get_mesh(depth_out, output_image, keep_edges=keep_edges)
    
    return input_mesh, output_mesh, gr.update(visible=True)

def create_3d_demo():

    gr.Markdown("### Image to 3D mesh")

    with gr.Row():
        with gr.Row():
            with gr.Column():
                image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
                depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
                checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
                prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                
                with gr.Accordion(label="Advanced Settings", open=False):
                    with gr.Row(mobile_collapse=False, equal_height=True):
                        guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
                        steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
                        strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
                        negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
                    with gr.Row(mobile_collapse=False, equal_height=True):
                        schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
                        scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
        
        with gr.Row() as share_btn_container:
            with gr.Column():
                result_og = gr.Model3D(label="original 3d reconstruction", clear_color=[
                                                        1.0, 1.0, 1.0, 1.0])
                
                result_new = gr.Model3D(label="inpainted 3d reconstruction", clear_color=[
                                                        1.0, 1.0, 1.0, 1.0])
            
    
    submit = gr.Button("Submit")
    submit.click(fn=predict_images_3d, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler, checkbox], outputs=[result_og, result_new, share_btn_container], api_name='run')


with image_blocks as demo:
    with gr.Tab("Image", default=True):
        create_vis_demo()
    with gr.Tab("3D"):
        create_3d_demo()
    
    gr.HTML(read_content("header.html"))
    

image_blocks.queue(max_size=25).launch()