Spaces:
Sleeping
Sleeping
File size: 8,706 Bytes
4375b7f 4e683ec 76a154f b1c12fa 76a154f c8fce50 4e683ec e1ed375 4375b7f 76a154f 4e683ec 2506a39 76a154f 25b70aa 76a154f 0f491e0 76a154f 4e683ec 98df5b4 76a154f 4e683ec 2506a39 d534002 4e683ec 904cc64 9938eb2 76a154f 4e683ec 76a154f 4e683ec e1ed375 4e683ec 904cc64 4e683ec 904cc64 c02d7fb 36fc847 904cc64 76a154f 904cc64 76a154f 5084686 ee9dd45 657a06e ee9dd45 5084686 ee9dd45 5084686 ee9dd45 5084686 ee9dd45 5084686 e1ed375 5084686 e1ed375 5084686 518cdca 4e683ec 7bcbb15 c3e546c 02c994c 25b70aa 76a154f 4e683ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Chat with Patched Mixture of Experts (MoE) Model
"""
LICENSE = """\
---
This space is powered by the patched-mix-4x7B model, which was created by [patched](https://patched.codes).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "patched-codes/patched-mix-4x7B"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# tokenizer.use_default_system_prompt = False
@spaces.GPU(duration=60)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.2,
top_p: float = 0.95,
# top_k: int = 50,
# repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
prompt = pipe.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p,
eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
return outputs[0]['generated_text'][len(prompt):].strip()
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# input_ids = input_ids.to(model.device)
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# {"input_ids": input_ids},
# streamer=streamer,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_p=top_p,
# #top_k=top_k,
# temperature=temperature,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.pad_token_id,
#num_beams=1,
#repetition_penalty=1.2,
# )
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# outputs = []
# for text in streamer:
# outputs.append(text)
# yield "".join(outputs)
example1='''You are a senior software engineer who is best in the world at fixing vulnerabilities.
Users will give you vulnerable code and you will generate a fix based on the provided INSTRUCTION.
INSTRUCTION:
Detected MD5 hash algorithm which is considered insecure. MD5 is not collision resistant and is therefore not suitable as a cryptographic signature. Use SHA256 or SHA3 instead.
Fix vulnerability CWE-327: Use of a Broken or Risky Cryptographic Algorithm at
return hashlib.md5(content).hexdigest()
def md5_hash(path):
with open(path, "rb") as f:
content = f.read()
return hashlib.md5(content).hexdigest()
'''
example2='''You are a software engineer who is best in the world at summarizing code changes.
Carefullly analyze the given old code and new code and generate a summary of the changes.
Old Code:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node *next;
} Node;
void processList() {
Node *head = (Node*)malloc(sizeof(Node));
head->data = 1;
head->next = (Node*)malloc(sizeof(Node));
head->next->data = 2;
printf("First element: %d\n", head->data);
free(head->next);
free(head);
printf("Accessing freed list: %d\n", head->next->data);
}
New Code:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int data;
struct Node *next;
} Node;
void processList() {
Node *head = (Node*)malloc(sizeof(Node));
if (head == NULL) {
perror("Failed to allocate memory for head");
return;
}
head->data = 1;
head->next = (Node*)malloc(sizeof(Node));
if (head->next == NULL) {
free(head);
perror("Failed to allocate memory for next node");
return;
}
head->next->data = 2;
printf("First element: %d\n", head->data);
free(head->next);
head->next = NULL;
free(head);
head = NULL;
if (head != NULL && head->next != NULL) {
printf("Accessing freed list: %d\n", head->next->data);
}
}
'''
example3='''You are a senior security researcher who is best in the world at detecting vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various sources to sinks.
Assume that any call to an unknown external API is not sanitized.
Respond only with either "YES" or "NO".
Is the following code prone to CWE-117: Improper Output Neutralization for Logs
at logger.info("Received request with API Key: %s", api_key)
with source logging.getLogger(__name__)
and sink logger.info("Received request with API Key: %s", api_key)
from flask import Flask, request, jsonify
import logging
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@app.route('/api/data', methods=['GET'])
def get_data():
api_key = request.args.get('api_key')
logger.info("Received request with API Key: %s", api_key)
data = {"message": "Data processed"}
return jsonify(data)
'''
example4='''You are a senior software engineer who is best in the world at fixing vulnerabilities.
Users will give you vulnerable code and you will generate a fix based on the provided INSTRUCTION.
INSTRUCTION:
Detected subprocess function 'run' with user controlled data. A malicious actor could leverage this to perform command injection. You may consider using 'shlex.escape()'.
Fix vulnerability CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') at
result = subprocess.run(**run_kwargs)
def run(command, desc=None, errdesc=None, custom_env=None, live: bool = default_command_live) -> str:
if desc is not None:
print(desc)
run_kwargs = {{
"args": command,
"shell": True,
"env": os.environ if custom_env is None else custom_env,
"encoding": 'utf8',
"errors": 'ignore',
}}
if not live:
run_kwargs["stdout"] = run_kwargs["stderr"] = subprocess.PIPE
result = subprocess.run(**run_kwargs) ##here
if result.returncode != 0:
error_bits = [
f"{{errdesc or 'Error running command'}}.",
f"Command: {{command}}",
f"Error code: {{result.returncode}}",
]
if result.stdout:
error_bits.append(f"stdout: {{result.stdout}}")
if result.stderr:
error_bits.append(f"stderr: {{result.stderr}}")
raise RuntimeError("\n".join(error_bits))
return (result.stdout or "")
'''
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height="480px"),
additional_inputs=[
gr.Textbox(label="System prompt", lines=4),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
),
],
stop_btn=None,
examples=[
[example1],
[example2],
[example3],
[example4],
["You are a coding assistant, who is best in the world at debugging. Create a snake game in Python."],
],
)
with gr.Blocks(css="style.css",) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE, elem_classes="contain")
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|