|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import os |
|
|
|
import spaces |
|
from diffusers import AutoPipelineForText2Image, AutoencoderTiny |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
hf_token = os.getenv('HF_TOKEN') |
|
|
|
if torch.cuda.is_available(): |
|
dtype = torch.float16 |
|
torch.cuda.empty_cache() |
|
else: |
|
dtype = torch.float32 |
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
pipe = pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", token=hf_token, torch_dtype=torch.bfloat16) |
|
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors') |
|
pipe = pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
@spaces.GPU |
|
def infer( |
|
prompt, |
|
seed=2110073662, |
|
randomize_seed=False, |
|
width=1024, |
|
height=1024, |
|
guidance_scale=3.5, |
|
num_inference_steps=28, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"plugilo prompt:minimalist icon illustration in solid azure blue (#0099FF), ultra clean lines, flat 2D geometric shapes, negative space design, perfect symmetry, vector art style, corporate tech icon, pure white background, perfect smooth edges --no texture --no gradient --no shadows --no depth --stylize 750 --v 6 --ar 1:1", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # Text-to-Image Gradio Template") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=True): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|