File size: 5,879 Bytes
bbc58f1
89049aa
39e9a15
 
82e5ae4
55fca92
aff6cf1
ff9fef8
83cb010
d6f8b87
bbc58f1
ae5b9e6
94f65f0
 
3291aee
2d6d39c
 
512f0a2
075f555
4b86536
a1033fd
2d6d39c
7e43f5e
512f0a2
e7d25bd
72b485b
b9944f5
1abcbac
218b69c
8a44b1b
218b69c
0e527c5
 
 
 
 
 
 
 
d6f8b87
 
0e527c5
8d994a2
0e527c5
39e9a15
f7ccecd
d6f8b87
2e1aad1
 
85f710a
db49162
85f710a
e15b1bb
069ccf4
 
2e1aad1
 
85f710a
db49162
85f710a
9cb1e92
069ccf4
 
e5161ea
 
 
 
 
 
 
069ccf4
9c1de78
 
 
 
 
 
 
 
e5161ea
a766dc6
e5161ea
 
 
 
 
 
 
 
 
 
 
 
 
f862922
e5161ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4925144
e5161ea
 
b7d481d
 
e5161ea
 
4925144
e5161ea
 
 
 
 
 
 
a766dc6
 
e5161ea
 
90052cd
a766dc6
e5161ea
 
 
 
 
6736d4b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread
import emoji

text_gen=gr.Interface.load("spaces/Gustavosta/MagicPrompt-Stable-Diffusion")
def get_prompts(prompt_text):
    return text_gen("dreamlikeart, " + prompt_text)
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-diffusion-1.0")

def restart_script_periodically():
    while True:
        time.sleep(600) # 10 minutes
        os.execl(sys.executable, sys.executable, *sys.argv)

restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()


queue = Queue()
queue_threshold = 100

def add_random_noise(prompt, noise_level=0.00):
    if noise_level == 0:
        noise_level = 0.00
    # Get the percentage of characters to add as noise
    percentage_noise = noise_level * 5
    # Get the number of characters to add as noise
    num_noise_chars = int(len(prompt) * (percentage_noise/100))
    # Get the indices of the characters to add noise to
    noise_indices = random.sample(range(len(prompt)), num_noise_chars)
    # Add noise to the selected characters
    prompt_list = list(prompt)
    # Add numbers, special characters, and all emojis to the list of characters used to add noise
    noise_chars = string.ascii_letters + string.punctuation + ' ' + string.digits + emoji.emojize(":all:")
    for index in noise_indices:
        prompt_list[index] = random.choice(noise_chars)
    return "".join(prompt_list)



def send_it1(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output1 = proc1(prompt_with_noise)
    return output1

def send_it2(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(2)
    queue.put(prompt_with_noise)
    output2 = proc1(prompt_with_noise)
    return output2

#def send_it3(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output3 = proc1(prompt_with_noise)
    #return output3

#def send_it4(inputs, noise_level, proc1=proc1):
    #prompt_with_noise = add_random_noise(inputs, noise_level)
    #while queue.qsize() >= queue_threshold:
        #time.sleep(2)
    #queue.put(prompt_with_noise)
    #output4 = proc1(prompt_with_noise)
    #return output4


with gr.Blocks(css='style.css') as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div>
                <h1 style="font-weight: 900; font-size: 3rem; margin-bottom:20px;">
                  Dreamlike Diffusion 1.0
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 96%">
              Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs,
                <a href="https://twitter.com/DavidJohnstonxx/">created by Phenomenon1981</a>.
              </p>
              <p style="margin-bottom: 10px; font-size: 98%">
              ❤️ Press the Like Button if you enjoy my space! ❤️</a>
              </p>
            </div>
        """
    )
    with gr.Column(elem_id="col-container"):
        with gr.Row(variant="compact"):
            input_text = gr.Textbox(
                label="Short Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter a basic idea and click 'Magic Prompt'",
            ).style(
                container=False,
            )
            see_prompts = gr.Button("✨ Magic Prompt ✨").style(full_width=False)

        
        with gr.Row(variant="compact"):
            prompt = gr.Textbox(
                label="Enter your prompt",
                show_label=False,
                max_lines=2,
                placeholder="Full Prompt",
            ).style(
                container=False,
            )
            run = gr.Button("Generate Images").style(full_width=False)
        
        with gr.Row():
            with gr.Row():
                noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
        with gr.Row():
            with gr.Row():
                output1=gr.Image(label="Dreamlike Diffusion 1.0",show_label=False)
                output2=gr.Image(label="Dreamlike Diffusion 1.0",show_label=False)
        

        see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
        run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
        run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])


        with gr.Row():
                gr.HTML(
    """
        <div class="footer">
        <p> Demo for <a href="https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0">Dreamlike Diffusion 1.0</a> Stable Diffusion model
</p>
</div>
        <div class="acknowledgments" style="font-size: 115%">
            <p> Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!
            </p>
        </div>
    """
)

    demo.launch(enable_queue=True, inline=True)
    block.queue(concurrency_count=100)