Spaces:
Runtime error
Runtime error
File size: 7,318 Bytes
bbc58f1 89049aa 39e9a15 82e5ae4 55fca92 aff6cf1 ff9fef8 83cb010 bbc58f1 d8dae6c 13b32bd 3291aee 2d6d39c 512f0a2 075f555 4b86536 a1033fd 2d6d39c 7e43f5e 512f0a2 e7d25bd 72b485b b9944f5 1abcbac 8f76f51 8a44b1b 0e527c5 8d994a2 0e527c5 8d994a2 0e527c5 39e9a15 f7ccecd 2e1aad1 85f710a db49162 85f710a e15b1bb 069ccf4 2e1aad1 85f710a db49162 85f710a 9cb1e92 069ccf4 e5161ea 069ccf4 9c1de78 82e5ae4 e5161ea 4925144 e5161ea b7d481d e5161ea 9c1de78 e5161ea 4925144 e5161ea 6736d4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread
text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion")
def get_prompts(prompt_text):
return text_gen(prompt_text)
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-diffusion-1.0")
def restart_script_periodically():
while True:
time.sleep(600) # 10 minutes
os.execl(sys.executable, sys.executable, *sys.argv)
restart_thread = Thread(target=restart_script_periodically, daemon=True)
restart_thread.start()
queue = Queue()
queue_threshold = 100
def add_random_noise(prompt, noise_level=0.07):
if noise_level == 0:
noise_level = 0.07
# Get the percentage of characters to add as noise
percentage_noise = noise_level * 5
# Get the number of characters to add as noise
num_noise_chars = int(len(prompt) * (percentage_noise/100))
# Get the indices of the characters to add noise to
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
# Add noise to the selected characters
prompt_list = list(prompt)
noise_chars = string.ascii_letters + string.punctuation + ' '
for index in noise_indices:
prompt_list[index] = random.choice(noise_chars)
return "".join(prompt_list)
def send_it1(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(2)
queue.put(prompt_with_noise)
output1 = proc1(prompt_with_noise)
return output1
def send_it2(inputs, noise_level, proc1=proc1):
prompt_with_noise = add_random_noise(inputs, noise_level)
while queue.qsize() >= queue_threshold:
time.sleep(2)
queue.put(prompt_with_noise)
output2 = proc1(prompt_with_noise)
return output2
#def send_it3(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output3 = proc1(prompt_with_noise)
#return output3
#def send_it4(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output4 = proc1(prompt_with_noise)
#return output4
#def send_it5(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output5 = proc1(prompt_with_noise)
#return output5
#def send_it6(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output6 = proc1(prompt_with_noise)
#return output6
#def send_it7(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output7 = proc1(prompt_with_noise)
#return output7
#def send_it8(inputs, noise_level, proc1=proc1):
#prompt_with_noise = add_random_noise(inputs, noise_level)
#while queue.qsize() >= queue_threshold:
#time.sleep(2)
#queue.put(prompt_with_noise)
#output8 = proc1(prompt_with_noise)
#return output8
css = '''
#col-container {max-width: 800px; margin-left: auto; margin-right: auto;}
a {
color: inherit;
text-decoration: underline;
}
'''
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<h1 style="font-weight: 900; font-size: 3rem; margin-bottom:20px;">
Dreamlike Diffusion 1.0
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 96%">
Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs,
<a href="https://twitter.com/DavidJohnstonxx/">created by Phenomenon1981</a>.
</p>
<p style="margin-bottom: 10px; font-size: 98%">
❤️ Press the Like Button if you enjoy my space! ❤️</a>.
</p>
</div>
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row(variant="compact"):
input_text = gr.Textbox(
label="Short Prompt",
show_label=False,
max_lines=2,
placeholder="Enter a basic idea and click 'Magic Prompt'",
).style(
container=False,
)
see_prompts = gr.Button("✨ Magic Prompt ✨").style(full_width=False)
with gr.Row(variant="compact"):
prompt = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=2,
placeholder="Full Prompt",
).style(
container=False,
)
run = gr.Button("Generate Images").style(full_width=False)
with gr.Row():
with gr.Row():
noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
with gr.Row():
with gr.Row():
output1=gr.Image(label="Dreamlike Diffusion 1.0",show_label=False)
output2=gr.Image(label="Dreamlike Diffusion 1.0",show_label=False)
#with gr.Row():
#output1=gr.Image()
see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
with gr.Row():
gr.HTML(
"""
<div class="footer" style="margin-bottom: 45px; margin-top: 15px; text-align: center; border-bottom: 1px solid #e5e5e5;">
<p style="font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: #0b0f19;"> Demo for <a href="https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0">Dreamlike Diffusion 1.0</a> Stable Diffusion model
</p>
</div>
<div class="acknowledgments" style="margin: 1.25em 0 .25em 0; font-size: 115%;">
<p style="margin: 1.25em 0 .25em 0; font-size: 115%;"> Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!
</p>
</div>
"""
)
demo.launch(enable_queue=True, inline=True)
block.queue(concurrency_count=100) |