File size: 5,526 Bytes
bbc58f1
89049aa
39e9a15
 
82e5ae4
55fca92
aff6cf1
ff9fef8
83cb010
bbc58f1
89049aa
1b95351
89049aa
54174b0
aef7b0b
39e9a15
512f0a2
 
 
3b6bff3
512f0a2
 
 
3b6bff3
512f0a2
 
e36c083
8f76f51
0e527c5
 
 
 
 
 
 
 
8d994a2
0e527c5
8d994a2
0e527c5
39e9a15
f7ccecd
2e1aad1
 
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
 
2e1aad1
 
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
 
2e1aad1
 
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
 
2e1aad1
 
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
39e9a15
cf37cf4
2e1aad1
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
 
cf37cf4
2e1aad1
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
 
cf37cf4
2e1aad1
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
39e9a15
cf37cf4
2e1aad1
3f46fdd
89049aa
3f46fdd
89049aa
069ccf4
82e5ae4
b0a0637
54174b0
3f46fdd
89049aa
3f46fdd
89049aa
f7ccecd
54174b0
89f532b
54174b0
68ce975
39e9a15
069ccf4
 
 
39e9a15
2e1aad1
c79a309
13af8bf
39e9a15
89f532b
5e3a3d6
14a9f9b
cf37cf4
 
79c3e76
cf37cf4
 
069ccf4
966f38f
 
79c3e76
966f38f
 
39e9a15
f7ccecd
2e1aad1
 
 
 
 
 
 
 
069ccf4
39e9a15
512f0a2
1b95351
f2c27b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import sys
from pathlib import Path
import random
import string
import time
from queue import Queue
from threading import Thread

queue = Queue()
queue_threshold = 30

text_gen=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion")
proc1=gr.Interface.load("models/dreamlike-art/dreamlike-diffusion-1.0", live=True)

def reset_queue_periodically():
    start_time = time.time()
    while True:
        if time.time() - start_time >= 300: # 5 minutes
            queue.queue.clear()
            start_time = time.time()

reset_queue_thread = Thread(target=reset_queue_periodically, daemon=True)
reset_queue_thread.start()


def add_random_noise(prompt, noise_level=0.07):
    # Get the percentage of characters to add as noise
    percentage_noise = noise_level * 5
    # Get the number of characters to add as noise
    num_noise_chars = int(len(prompt) * (percentage_noise/100))
    # Get the indices of the characters to add noise to
    noise_indices = random.sample(range(len(prompt)), num_noise_chars)
    # Add noise to the selected characters
    prompt_list = list(prompt)
    noise_chars = string.ascii_letters + string.punctuation + ' '
    for index in noise_indices:
        prompt_list[index] = random.choice(noise_chars)
    return "".join(prompt_list)


def send_it1(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output1 = proc1(queue.get())
    return output1

def send_it2(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output2 = proc1(queue.get())
    return output2

def send_it3(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output3 = proc1(queue.get())
    return output3

def send_it4(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output4 = proc1(queue.get())
    return output4

def send_it5(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output5 = proc1(queue.get())
    return output5

def send_it6(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output6 = proc1(queue.get())
    return output6

def send_it7(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output7 = proc1(queue.get())
    return output7

def send_it8(inputs, noise_level, proc1=proc1):
    prompt_with_noise = add_random_noise(inputs, noise_level)
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_with_noise)
    output8 = proc1(queue.get())
    return output8


def get_prompts(prompt_text):
    while queue.qsize() >= queue_threshold:
        time.sleep(1)
    queue.put(prompt_text)
    output = text_gen(queue.get())
    return output


with gr.Blocks() as myface:
    with gr.Row():

        input_text=gr.Textbox(label="Short Prompt")
        see_prompts=gr.Button("Magic Prompt")
    with gr.Row():

        prompt=gr.Textbox(label="Enter Prompt")
        noise_level=gr.Slider(minimum=0.1, maximum=3, step=0.1, label="Noise Level: Controls how much randomness is added to the input before it is sent to the model. Higher noise level produces more diverse outputs, while lower noise level produces similar outputs.")
        run=gr.Button("Generate")

    with gr.Row():
        like_message = gr.Button("❤️ Press the Like Button if you enjoy my space! ❤️")
    with gr.Row():
        output1=gr.Image(label="Dreamlike Diffusion 1.0")
        output2=gr.Image(label="Dreamlike Diffusion 1.0")
    with gr.Row():
        output3=gr.Image(label="Dreamlike Diffusion 1.0")
        output4=gr.Image(label="Dreamlike Diffusion 1.0")
    with gr.Row():
        output5=gr.Image(label="Dreamlike Diffusion 1.0")
        output6=gr.Image(label="Dreamlike Diffusion 1.0")
    with gr.Row():
        output7=gr.Image(label="Dreamlike Diffusion 1.0")
        output8=gr.Image(label="Dreamlike Diffusion 1.0")

    
    run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
    run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
    run.click(send_it3, inputs=[prompt, noise_level], outputs=[output3])
    run.click(send_it4, inputs=[prompt, noise_level], outputs=[output4])
    run.click(send_it5, inputs=[prompt, noise_level], outputs=[output5])
    run.click(send_it6, inputs=[prompt, noise_level], outputs=[output6])
    run.click(send_it7, inputs=[prompt, noise_level], outputs=[output7])
    run.click(send_it8, inputs=[prompt, noise_level], outputs=[output8])
    see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt])

myface.launch(enable_queue=True, inline=True)
myface.queue(concurrency_count=30)
reset_queue_thread.join()