|
from chain_img_processor import ChainImgProcessor, ChainImgPlugin |
|
import os |
|
from PIL import Image |
|
from numpy import asarray |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import scipy.io as sio |
|
import numpy as np |
|
import torch.nn.utils.spectral_norm as SpectralNorm |
|
from torchvision.ops import roi_align |
|
|
|
from math import sqrt |
|
import os |
|
|
|
import cv2 |
|
import os |
|
from torchvision.transforms.functional import normalize |
|
import copy |
|
import threading |
|
|
|
modname = os.path.basename(__file__)[:-3] |
|
|
|
oDMDNet = None |
|
device = None |
|
|
|
THREAD_LOCK_DMDNET = threading.Lock() |
|
|
|
|
|
|
|
|
|
def start(core:ChainImgProcessor): |
|
manifest = { |
|
"name": "DMDNet", |
|
"version": "1.0", |
|
|
|
"default_options": {}, |
|
"img_processor": { |
|
"dmdnet": DMDNETPlugin |
|
} |
|
} |
|
return manifest |
|
|
|
def start_with_options(core:ChainImgProcessor, manifest:dict): |
|
pass |
|
|
|
|
|
class DMDNETPlugin(ChainImgPlugin): |
|
|
|
|
|
def landmarks106_to_68(self, pt106): |
|
map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17, |
|
43,48,49,51,50, |
|
102,103,104,105,101, |
|
72,73,74,86,78,79,80,85,84, |
|
35,41,42,39,37,36, |
|
89,95,96,93,91,90, |
|
52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54 |
|
] |
|
|
|
pt68 = [] |
|
for i in range(68): |
|
index = map106to68[i] |
|
pt68.append(pt106[index]) |
|
return pt68 |
|
|
|
def init_plugin(self): |
|
global create |
|
|
|
if oDMDNet == None: |
|
create(self.device) |
|
|
|
|
|
def process(self, frame, params:dict): |
|
if "face_detected" in params: |
|
if not params["face_detected"]: |
|
return frame |
|
|
|
temp_frame = copy.copy(frame) |
|
if "processed_faces" in params: |
|
for face in params["processed_faces"]: |
|
start_x, start_y, end_x, end_y = map(int, face['bbox']) |
|
|
|
|
|
padding_x = 0 |
|
padding_y = 0 |
|
|
|
start_x = max(0, start_x - padding_x) |
|
start_y = max(0, start_y - padding_y) |
|
end_x = max(0, end_x + padding_x) |
|
end_y = max(0, end_y + padding_y) |
|
temp_face = temp_frame[start_y:end_y, start_x:end_x] |
|
if temp_face.size: |
|
temp_face = self.enhance_face(temp_face, face) |
|
temp_face = cv2.resize(temp_face, (end_x - start_x,end_y - start_y), interpolation = cv2.INTER_LANCZOS4) |
|
temp_frame[start_y:end_y, start_x:end_x] = temp_face |
|
|
|
temp_frame = Image.blend(Image.fromarray(frame), Image.fromarray(temp_frame), params["blend_ratio"]) |
|
return asarray(temp_frame) |
|
|
|
|
|
def enhance_face(self, clip, face): |
|
global device |
|
|
|
lm106 = face.landmark_2d_106 |
|
lq_landmarks = asarray(self.landmarks106_to_68(lm106)) |
|
lq = read_img_tensor(clip, False) |
|
|
|
LQLocs = get_component_location(lq_landmarks) |
|
|
|
SpMem256Para, SpMem128Para, SpMem64Para = None, None, None |
|
|
|
with torch.no_grad(): |
|
with THREAD_LOCK_DMDNET: |
|
try: |
|
GenericResult, SpecificResult = oDMDNet(lq = lq.to(device), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para) |
|
except Exception as e: |
|
print(f'Error {e} there may be something wrong with the detected component locations.') |
|
return clip |
|
save_generic = GenericResult * 0.5 + 0.5 |
|
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) |
|
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0 |
|
|
|
check_lq = lq * 0.5 + 0.5 |
|
check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) |
|
check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0 |
|
enhanced_img = np.hstack((check_lq, save_generic)) |
|
temp_frame = save_generic.astype("uint8") |
|
|
|
return temp_frame |
|
|
|
|
|
def create(devicename): |
|
global device, oDMDNet |
|
|
|
test = "cuda" if torch.cuda.is_available() else "cpu" |
|
device = torch.device(devicename) |
|
oDMDNet = DMDNet().to(device) |
|
weights = torch.load('./models/DMDNet.pth') |
|
oDMDNet.load_state_dict(weights, strict=True) |
|
|
|
oDMDNet.eval() |
|
num_params = 0 |
|
for param in oDMDNet.parameters(): |
|
num_params += param.numel() |
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_img_tensor(Img=None, return_landmark=True): |
|
|
|
if Img.ndim == 2: |
|
Img = cv2.cvtColor(Img, cv2.COLOR_GRAY2RGB) |
|
else: |
|
Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB) |
|
|
|
if Img.shape[0] < 512 or Img.shape[1] < 512: |
|
Img = cv2.resize(Img, (512,512), interpolation = cv2.INTER_AREA) |
|
|
|
|
|
Img = Img.transpose((2, 0, 1))/255.0 |
|
Img = torch.from_numpy(Img).float() |
|
normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True) |
|
ImgTensor = Img.unsqueeze(0) |
|
return ImgTensor |
|
|
|
|
|
def get_component_location(Landmarks, re_read=False): |
|
if re_read: |
|
ReadLandmark = [] |
|
with open(Landmarks,'r') as f: |
|
for line in f: |
|
tmp = [float(i) for i in line.split(' ') if i != '\n'] |
|
ReadLandmark.append(tmp) |
|
ReadLandmark = np.array(ReadLandmark) |
|
Landmarks = np.reshape(ReadLandmark, [-1, 2]) |
|
Map_LE_B = list(np.hstack((range(17,22), range(36,42)))) |
|
Map_RE_B = list(np.hstack((range(22,27), range(42,48)))) |
|
Map_LE = list(range(36,42)) |
|
Map_RE = list(range(42,48)) |
|
Map_NO = list(range(29,36)) |
|
Map_MO = list(range(48,68)) |
|
|
|
Landmarks[Landmarks>504]=504 |
|
Landmarks[Landmarks<8]=8 |
|
|
|
|
|
Mean_LE = np.mean(Landmarks[Map_LE],0) |
|
L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1]) |
|
L_LE1 = L_LE1 * 1.3 |
|
L_LE2 = L_LE1 / 1.9 |
|
L_LE_xy = L_LE1 + L_LE2 |
|
L_LE_lt = [L_LE_xy/2, L_LE1] |
|
L_LE_rb = [L_LE_xy/2, L_LE2] |
|
Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int) |
|
|
|
|
|
Mean_RE = np.mean(Landmarks[Map_RE],0) |
|
L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1]) |
|
L_RE1 = L_RE1 * 1.3 |
|
L_RE2 = L_RE1 / 1.9 |
|
L_RE_xy = L_RE1 + L_RE2 |
|
L_RE_lt = [L_RE_xy/2, L_RE1] |
|
L_RE_rb = [L_RE_xy/2, L_RE2] |
|
Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int) |
|
|
|
|
|
Mean_NO = np.mean(Landmarks[Map_NO],0) |
|
L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25 |
|
L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1 |
|
L_NO_xy = L_NO1 * 2 |
|
L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2] |
|
L_NO_rb = [L_NO_xy/2, L_NO2] |
|
Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int) |
|
|
|
|
|
Mean_MO = np.mean(Landmarks[Map_MO],0) |
|
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1 |
|
MO_O = Mean_MO - L_MO + 1 |
|
MO_T = Mean_MO + L_MO |
|
MO_T[MO_T>510]=510 |
|
Location_MO = np.hstack((MO_O, MO_T)).astype(int) |
|
return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0) |
|
|
|
|
|
|
|
|
|
def calc_mean_std_4D(feat, eps=1e-5): |
|
|
|
size = feat.size() |
|
assert (len(size) == 4) |
|
N, C = size[:2] |
|
feat_var = feat.view(N, C, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(N, C, 1, 1) |
|
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
def adaptive_instance_normalization_4D(content_feat, style_feat): |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std_4D(style_feat) |
|
content_mean, content_std = calc_mean_std_4D(content_feat) |
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True): |
|
return nn.Sequential( |
|
SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)), |
|
) |
|
|
|
|
|
class MSDilateBlock(nn.Module): |
|
def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True): |
|
super(MSDilateBlock, self).__init__() |
|
self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias) |
|
self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias) |
|
self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias) |
|
self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias) |
|
self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias)) |
|
def forward(self, x): |
|
conv1 = self.conv1(x) |
|
conv2 = self.conv2(x) |
|
conv3 = self.conv3(x) |
|
conv4 = self.conv4(x) |
|
cat = torch.cat([conv1, conv2, conv3, conv4], 1) |
|
out = self.convi(cat) + x |
|
return out |
|
|
|
|
|
class AdaptiveInstanceNorm(nn.Module): |
|
def __init__(self, in_channel): |
|
super().__init__() |
|
self.norm = nn.InstanceNorm2d(in_channel) |
|
|
|
def forward(self, input, style): |
|
style_mean, style_std = calc_mean_std_4D(style) |
|
out = self.norm(input) |
|
size = input.size() |
|
out = style_std.expand(size) * out + style_mean.expand(size) |
|
return out |
|
|
|
class NoiseInjection(nn.Module): |
|
def __init__(self, channel): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1)) |
|
def forward(self, image, noise): |
|
if noise is None: |
|
b, c, h, w = image.shape |
|
noise = image.new_empty(b, 1, h, w).normal_() |
|
return image + self.weight * noise |
|
|
|
class StyledUpBlock(nn.Module): |
|
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False): |
|
super().__init__() |
|
|
|
self.noise_inject = noise_inject |
|
if upsample: |
|
self.conv1 = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), |
|
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), |
|
nn.LeakyReLU(0.2), |
|
) |
|
else: |
|
self.conv1 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), |
|
) |
|
self.convup = nn.Sequential( |
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), |
|
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)), |
|
) |
|
if self.noise_inject: |
|
self.noise1 = NoiseInjection(out_channel) |
|
|
|
self.lrelu1 = nn.LeakyReLU(0.2) |
|
|
|
self.ScaleModel1 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)) |
|
) |
|
self.ShiftModel1 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), |
|
) |
|
|
|
def forward(self, input, style): |
|
out = self.conv1(input) |
|
out = self.lrelu1(out) |
|
Shift1 = self.ShiftModel1(style) |
|
Scale1 = self.ScaleModel1(style) |
|
out = out * Scale1 + Shift1 |
|
if self.noise_inject: |
|
out = self.noise1(out, noise=None) |
|
outup = self.convup(out) |
|
return outup |
|
|
|
|
|
|
|
|
|
|
|
def AttentionBlock(in_channel): |
|
return nn.Sequential( |
|
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), |
|
) |
|
|
|
class DilateResBlock(nn.Module): |
|
def __init__(self, dim, dilation=[5,3] ): |
|
super(DilateResBlock, self).__init__() |
|
self.Res = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])), |
|
) |
|
def forward(self, x): |
|
out = x + self.Res(x) |
|
return out |
|
|
|
|
|
class KeyValue(nn.Module): |
|
def __init__(self, indim, keydim, valdim): |
|
super(KeyValue, self).__init__() |
|
self.Key = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
self.Value = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
def forward(self, x): |
|
return self.Key(x), self.Value(x) |
|
|
|
class MaskAttention(nn.Module): |
|
def __init__(self, indim): |
|
super(MaskAttention, self).__init__() |
|
self.conv1 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
self.conv2 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
self.conv3 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
self.convCat = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
def forward(self, x, y, z): |
|
c1 = self.conv1(x) |
|
c2 = self.conv2(y) |
|
c3 = self.conv3(z) |
|
return self.convCat(torch.cat([c1,c2,c3], dim=1)) |
|
|
|
class Query(nn.Module): |
|
def __init__(self, indim, quedim): |
|
super(Query, self).__init__() |
|
self.Query = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)), |
|
) |
|
def forward(self, x): |
|
return self.Query(x) |
|
|
|
def roi_align_self(input, location, target_size): |
|
return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],(target_size,target_size),mode='bilinear',align_corners=False) for i in range(input.size(0))],0) |
|
|
|
class FeatureExtractor(nn.Module): |
|
def __init__(self, ngf = 64, key_scale = 4): |
|
super().__init__() |
|
|
|
self.key_scale = 4 |
|
self.part_sizes = np.array([80,80,50,110]) |
|
self.feature_sizes = np.array([256,128,64]) |
|
|
|
self.conv1 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), |
|
) |
|
self.conv2 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)) |
|
) |
|
self.res1 = DilateResBlock(ngf, [5,3]) |
|
self.res2 = DilateResBlock(ngf, [5,3]) |
|
|
|
|
|
self.conv3 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), |
|
) |
|
self.conv4 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)) |
|
) |
|
self.res3 = DilateResBlock(ngf*2, [3,1]) |
|
self.res4 = DilateResBlock(ngf*2, [3,1]) |
|
|
|
self.conv5 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), |
|
) |
|
self.conv6 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)) |
|
) |
|
self.res5 = DilateResBlock(ngf*4, [1,1]) |
|
self.res6 = DilateResBlock(ngf*4, [1,1]) |
|
|
|
self.LE_256_Q = Query(ngf, ngf // self.key_scale) |
|
self.RE_256_Q = Query(ngf, ngf // self.key_scale) |
|
self.MO_256_Q = Query(ngf, ngf // self.key_scale) |
|
self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) |
|
self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) |
|
self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale) |
|
self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) |
|
self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) |
|
self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale) |
|
|
|
|
|
def forward(self, img, locs): |
|
le_location = locs[:,0,:].int().cpu().numpy() |
|
re_location = locs[:,1,:].int().cpu().numpy() |
|
no_location = locs[:,2,:].int().cpu().numpy() |
|
mo_location = locs[:,3,:].int().cpu().numpy() |
|
|
|
|
|
f1_0 = self.conv1(img) |
|
f1_1 = self.res1(f1_0) |
|
f2_0 = self.conv2(f1_1) |
|
f2_1 = self.res2(f2_0) |
|
|
|
f3_0 = self.conv3(f2_1) |
|
f3_1 = self.res3(f3_0) |
|
f4_0 = self.conv4(f3_1) |
|
f4_1 = self.res4(f4_0) |
|
|
|
f5_0 = self.conv5(f4_1) |
|
f5_1 = self.res5(f5_0) |
|
f6_0 = self.conv6(f5_1) |
|
f6_1 = self.res6(f6_0) |
|
|
|
|
|
|
|
le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2) |
|
re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2) |
|
mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2) |
|
|
|
le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4) |
|
re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4) |
|
mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4) |
|
|
|
le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8) |
|
re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8) |
|
mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8) |
|
|
|
|
|
le_256_q = self.LE_256_Q(le_part_256) |
|
re_256_q = self.RE_256_Q(re_part_256) |
|
mo_256_q = self.MO_256_Q(mo_part_256) |
|
|
|
le_128_q = self.LE_128_Q(le_part_128) |
|
re_128_q = self.RE_128_Q(re_part_128) |
|
mo_128_q = self.MO_128_Q(mo_part_128) |
|
|
|
le_64_q = self.LE_64_Q(le_part_64) |
|
re_64_q = self.RE_64_Q(re_part_64) |
|
mo_64_q = self.MO_64_Q(mo_part_64) |
|
|
|
return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\ |
|
'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \ |
|
'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \ |
|
'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \ |
|
'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\ |
|
'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\ |
|
'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q} |
|
|
|
|
|
class DMDNet(nn.Module): |
|
def __init__(self, ngf = 64, banks_num = 128): |
|
super().__init__() |
|
self.part_sizes = np.array([80,80,50,110]) |
|
self.feature_sizes = np.array([256,128,64]) |
|
|
|
self.banks_num = banks_num |
|
self.key_scale = 4 |
|
|
|
self.E_lq = FeatureExtractor(key_scale = self.key_scale) |
|
self.E_hq = FeatureExtractor(key_scale = self.key_scale) |
|
|
|
self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) |
|
self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) |
|
self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf) |
|
|
|
self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) |
|
self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) |
|
self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2) |
|
|
|
self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) |
|
self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) |
|
self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4) |
|
|
|
|
|
self.LE_256_Attention = AttentionBlock(64) |
|
self.RE_256_Attention = AttentionBlock(64) |
|
self.MO_256_Attention = AttentionBlock(64) |
|
|
|
self.LE_128_Attention = AttentionBlock(128) |
|
self.RE_128_Attention = AttentionBlock(128) |
|
self.MO_128_Attention = AttentionBlock(128) |
|
|
|
self.LE_64_Attention = AttentionBlock(256) |
|
self.RE_64_Attention = AttentionBlock(256) |
|
self.MO_64_Attention = AttentionBlock(256) |
|
|
|
self.LE_256_Mask = MaskAttention(64) |
|
self.RE_256_Mask = MaskAttention(64) |
|
self.MO_256_Mask = MaskAttention(64) |
|
|
|
self.LE_128_Mask = MaskAttention(128) |
|
self.RE_128_Mask = MaskAttention(128) |
|
self.MO_128_Mask = MaskAttention(128) |
|
|
|
self.LE_64_Mask = MaskAttention(256) |
|
self.RE_64_Mask = MaskAttention(256) |
|
self.MO_64_Mask = MaskAttention(256) |
|
|
|
self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1]) |
|
|
|
self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) |
|
self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) |
|
self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) |
|
self.up4 = nn.Sequential( |
|
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
UpResBlock(ngf), |
|
UpResBlock(ngf), |
|
SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)), |
|
nn.Tanh() |
|
) |
|
|
|
|
|
self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40)) |
|
self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40)) |
|
self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55)) |
|
self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40)) |
|
self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40)) |
|
self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55)) |
|
|
|
|
|
self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20)) |
|
self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20)) |
|
self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27)) |
|
self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20)) |
|
self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20)) |
|
self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27)) |
|
|
|
self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10)) |
|
self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10)) |
|
self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13)) |
|
self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10)) |
|
self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10)) |
|
self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13)) |
|
|
|
|
|
def readMem(self, k, v, q): |
|
sim = F.conv2d(q, k) |
|
score = F.softmax(sim/sqrt(sim.size(1)), dim=1) |
|
sb,sn,sw,sh = score.size() |
|
s_m = score.view(sb, -1).unsqueeze(1) |
|
vb,vn,vw,vh = v.size() |
|
v_in = v.view(vb, -1).repeat(sb,1,1) |
|
mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh) |
|
max_inds = torch.argmax(score, dim=1).squeeze() |
|
return mem_out, max_inds |
|
|
|
|
|
def memorize(self, img, locs): |
|
fs = self.E_hq(img, locs) |
|
LE256_key, LE256_value = self.LE_256_KV(fs['le256']) |
|
RE256_key, RE256_value = self.RE_256_KV(fs['re256']) |
|
MO256_key, MO256_value = self.MO_256_KV(fs['mo256']) |
|
|
|
LE128_key, LE128_value = self.LE_128_KV(fs['le128']) |
|
RE128_key, RE128_value = self.RE_128_KV(fs['re128']) |
|
MO128_key, MO128_value = self.MO_128_KV(fs['mo128']) |
|
|
|
LE64_key, LE64_value = self.LE_64_KV(fs['le64']) |
|
RE64_key, RE64_value = self.RE_64_KV(fs['re64']) |
|
MO64_key, MO64_value = self.MO_64_KV(fs['mo64']) |
|
|
|
Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value} |
|
Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value} |
|
Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value} |
|
|
|
FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']} |
|
FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']} |
|
FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']} |
|
|
|
return Mem256, Mem128, Mem64 |
|
|
|
def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None): |
|
le_256_q = fs_in['le_256_q'] |
|
re_256_q = fs_in['re_256_q'] |
|
mo_256_q = fs_in['mo_256_q'] |
|
|
|
le_128_q = fs_in['le_128_q'] |
|
re_128_q = fs_in['re_128_q'] |
|
mo_128_q = fs_in['mo_128_q'] |
|
|
|
le_64_q = fs_in['le_64_q'] |
|
re_64_q = fs_in['re_64_q'] |
|
mo_64_q = fs_in['mo_64_q'] |
|
|
|
|
|
|
|
le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q) |
|
re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q) |
|
mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q) |
|
|
|
le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q) |
|
re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q) |
|
mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q) |
|
|
|
le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q) |
|
re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q) |
|
mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q) |
|
|
|
if sp_256 is not None and sp_128 is not None and sp_64 is not None: |
|
le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q) |
|
re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q) |
|
mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q) |
|
le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g) |
|
le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g |
|
re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g) |
|
re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g |
|
mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g) |
|
mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g |
|
|
|
le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q) |
|
re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q) |
|
mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q) |
|
le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g) |
|
le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g |
|
re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g) |
|
re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g |
|
mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g) |
|
mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g |
|
|
|
le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q) |
|
re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q) |
|
mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q) |
|
le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g) |
|
le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g |
|
re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g) |
|
re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g |
|
mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g) |
|
mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g |
|
else: |
|
le_256_mem = le_256_mem_g |
|
re_256_mem = re_256_mem_g |
|
mo_256_mem = mo_256_mem_g |
|
le_128_mem = le_128_mem_g |
|
re_128_mem = re_128_mem_g |
|
mo_128_mem = mo_128_mem_g |
|
le_64_mem = le_64_mem_g |
|
re_64_mem = re_64_mem_g |
|
mo_64_mem = mo_64_mem_g |
|
|
|
le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256']) |
|
re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256']) |
|
mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256']) |
|
|
|
|
|
le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128']) |
|
re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128']) |
|
mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128']) |
|
|
|
|
|
le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64']) |
|
re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64']) |
|
mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64']) |
|
|
|
|
|
EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm} |
|
EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm} |
|
EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm} |
|
Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds} |
|
Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds} |
|
Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds} |
|
return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64 |
|
|
|
def reconstruct(self, fs_in, locs, memstar): |
|
le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm'] |
|
le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm'] |
|
le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm'] |
|
|
|
le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256'] |
|
re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256'] |
|
mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256'] |
|
|
|
le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128'] |
|
re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128'] |
|
mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128'] |
|
|
|
le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64'] |
|
re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64'] |
|
mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64'] |
|
|
|
|
|
le_location = locs[:,0,:] |
|
re_location = locs[:,1,:] |
|
mo_location = locs[:,3,:] |
|
le_location = le_location.cpu().int().numpy() |
|
re_location = re_location.cpu().int().numpy() |
|
mo_location = mo_location.cpu().int().numpy() |
|
|
|
up_in_256 = fs_in['f256'].clone() |
|
up_in_128 = fs_in['f128'].clone() |
|
up_in_64 = fs_in['f64'].clone() |
|
|
|
for i in range(fs_in['f256'].size(0)): |
|
up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False) |
|
up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False) |
|
up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False) |
|
|
|
up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False) |
|
up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False) |
|
up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False) |
|
|
|
up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False) |
|
up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False) |
|
up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False) |
|
|
|
ms_in_64 = self.MSDilate(fs_in['f64'].clone()) |
|
fea_up1 = self.up1(ms_in_64, up_in_64) |
|
fea_up2 = self.up2(fea_up1, up_in_128) |
|
fea_up3 = self.up3(fea_up2, up_in_256) |
|
output = self.up4(fea_up3) |
|
return output |
|
|
|
def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None): |
|
return self.memorize(sp_imgs, sp_locs) |
|
|
|
def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None): |
|
fs_in = self.E_lq(lq, loc) |
|
GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in) |
|
GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64]) |
|
if sp_256 is not None and sp_128 is not None and sp_64 is not None: |
|
GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64) |
|
GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64]) |
|
else: |
|
GSOut = None |
|
return GeOut, GSOut |
|
|
|
class UpResBlock(nn.Module): |
|
def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d): |
|
super(UpResBlock, self).__init__() |
|
self.Model = nn.Sequential( |
|
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), |
|
nn.LeakyReLU(0.2), |
|
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)), |
|
) |
|
def forward(self, x): |
|
out = x + self.Model(x) |
|
return out |
|
|
|
|