File size: 1,811 Bytes
644ef64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import pickle
import joblib
import numpy as np
from sklearn.preprocessing import StandardScaler
# Diabetes prediction
def diabetes_prediction(data):
with open("src/Diabetes-Detection/scaler.pkl", "rb") as f:
scaler = pickle.load(f)
data = np.array(data).reshape(1,-1)
scaled_data = scaler.transform(data)
with open("src/Diabetes-Detection/model.pkl", "rb") as f:
model = pickle.load(f)
pred = model.predict(scaled_data)
return pred
# new_data = np.array([6,148,72,35,0,33.6,0.627,50]).reshape(1, -1)
# pred = diabetes_prediction(new_data)
# if pred==1:
# print("The patient has diabetes")
#breast cancer prediction
def breast_cancer_prediction(data):
with open("src/Breast-Cancer/scaler.pkl", "rb") as f:
scaler = pickle.load(f)
data = np.array(data).reshape(1,-1)
scaled_data = scaler.transform(data)
with open("src/Breast-Cancer/model.pkl", "rb") as f:
model = pickle.load(f)
pred = model.predict(scaled_data)
return pred
# new_data = np.array([17.99, 1001.0, 0.262779, 0.3001, 0.14710, 2019.0, 0.665600, 0.7119, 153.40, 0.006193, 0.460100, 0.11890]).reshape(1, -1)
# pred = breast_cancer_prediction(new_data)
# if pred==1:
# print("The patient has Breast cancer")
# else:
# print("The patient does not have Breast cancer")
def heart_disease_prediction(data):
with open("src/Heart-Disease/scaler.pkl", "rb") as f:
scaler = pickle.load(f)
data = np.array(data).reshape(1,-1)
scaled_data = scaler.transform(data)
with open("src/Heart-Disease/heart_model.pkl", "rb") as f:
model = pickle.load(f)
pred = model.predict(scaled_data)
return pred
def malaria_detection():
pass |