Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from transformers.generation import TopKLogitsWarper, TopPLogitsWarper | |
from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat | |
def infer_code( | |
models, | |
text, | |
spk_emb = None, | |
top_P = 0.7, | |
top_K = 20, | |
temperature = 0.3, | |
repetition_penalty = 1.05, | |
max_new_token = 2048, | |
**kwargs | |
): | |
device = next(models['gpt'].parameters()).device | |
if not isinstance(text, list): | |
text = [text] | |
if not isinstance(temperature, list): | |
temperature = [temperature] * models['gpt'].num_vq | |
if spk_emb is not None: | |
text = [f'[Stts][spk_emb]{i}[uv_break][Ptts]' for i in text] | |
else: | |
text = [f'[Stts][empty_spk]{i}[uv_break][Ptts]' for i in text] | |
text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) | |
input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq) | |
text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) | |
inputs = { | |
'input_ids': input_ids, | |
'text_mask': text_mask, | |
'attention_mask': text_token['attention_mask'], | |
} | |
emb = models['gpt'].get_emb(**inputs) | |
if spk_emb is not None: | |
emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \ | |
F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12) | |
num_code = models['gpt'].emb_code[0].num_embeddings - 1 | |
LogitsWarpers = [] | |
if top_P is not None: | |
LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) | |
if top_K is not None: | |
LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) | |
LogitsProcessors = [] | |
if repetition_penalty is not None and repetition_penalty != 1: | |
LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\ | |
repetition_penalty, num_code, 16)) | |
result = models['gpt'].generate( | |
emb, inputs['input_ids'], | |
temperature = torch.tensor(temperature, device=device), | |
attention_mask = inputs['attention_mask'], | |
LogitsWarpers = LogitsWarpers, | |
LogitsProcessors = LogitsProcessors, | |
eos_token = num_code, | |
max_new_token = max_new_token, | |
infer_text = False, | |
**kwargs | |
) | |
return result | |
def refine_text( | |
models, | |
text, | |
top_P = 0.7, | |
top_K = 20, | |
temperature = 0.7, | |
repetition_penalty = 1.0, | |
max_new_token = 384, | |
prompt = '', | |
**kwargs | |
): | |
device = next(models['gpt'].parameters()).device | |
if not isinstance(text, list): | |
text = [text] | |
assert len(text), 'text should not be empty' | |
text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text] | |
text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device) | |
text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device) | |
inputs = { | |
'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq), | |
'text_mask': text_mask, | |
'attention_mask': text_token['attention_mask'], | |
} | |
LogitsWarpers = [] | |
if top_P is not None: | |
LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) | |
if top_K is not None: | |
LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) | |
LogitsProcessors = [] | |
if repetition_penalty is not None and repetition_penalty != 1: | |
LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16)) | |
result = models['gpt'].generate( | |
models['gpt'].get_emb(**inputs), inputs['input_ids'], | |
temperature = torch.tensor([temperature,], device=device), | |
attention_mask = inputs['attention_mask'], | |
LogitsWarpers = LogitsWarpers, | |
LogitsProcessors = LogitsProcessors, | |
eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None], | |
max_new_token = max_new_token, | |
infer_text = True, | |
**kwargs | |
) | |
return result |