File size: 3,260 Bytes
9d496b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import supervision as sv
from ultralytics import YOLO
from tqdm import tqdm
import re
from collections import defaultdict
from paddleocr import PaddleOCR
from pdf2image import convert_from_path
import json
import cv2
import gradio as gr

# Initialize YOLO model
model_yolo = YOLO(model="runs/detect/train/weights/best.pt")
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=False)

def process_pdf(file):
    images = convert_from_path(file.name)

    # Function to process each slice of the image
    def slicer_callback(slice: np.ndarray) -> sv.Detections:
        result = model_yolo.predict(slice, conf=0.85)[0]
        detections = sv.Detections.from_ultralytics(result)
        return detections

    # Initialize the slicer
    slicer = sv.InferenceSlicer(
        callback=slicer_callback,
        slice_wh=(2000, 800),
        overlap_ratio_wh=(0.6, 0.6),
        overlap_filter_strategy=sv.OverlapFilter.NON_MAX_MERGE,
        iou_threshold=0.05,
    )

    results = []
    for pil_image in images:
        opencvImage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
        opencvImage = cv2.rotate(opencvImage, cv2.ROTATE_90_CLOCKWISE)
        # Perform inference on the entire image
        detections = slicer(opencvImage)

        # Function to run the TrOCR model with detections
        def run_example(detections):
            for detection in tqdm(detections):
                # Extract bounding box coordinates
                bbox = detection[0]
                x_min, y_min, x_max, y_max = bbox
                x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)

                # Crop the detected region from the image
                cropped_image = opencvImage[y_min:y_max, x_min:x_max]
                result = ocr.ocr(cropped_image, cls=True)[0]
                if result is not None:
                    text = ''

                    if re.match(r"([A-Z])(\d+)-(\d+)", result[0][1][0]):
                        text = result[0][1][0]
                    elif re.match(r"([A-Z])(\d+)-(\d+)", ''.join([line[1][0] for line in result])):
                        text = ''.join([line[1][0] for line in result])

                    # Print the generated text
                    results.append(text)

        # Run example with detections
        run_example(detections)

    detected_numbers = defaultdict(list)
    for result in results:
        match = re.match(r"([A-Z])(\d+)-(\d+)", result)
        if match:
            letter = match.group(1)
            x = int(match.group(2))
            y = int(match.group(3))
            detected_numbers[(letter, x)].append(y)

    # Generate the desired JSON output
    output = {}

    for (letter, x) in sorted(detected_numbers.keys()):
        key = f"CB-{letter}{x}"
        value = [f"{letter}{x}-{i}" for i in sorted(detected_numbers[(letter, x)])]
        output[key] = value

    return json.dumps(output, indent=4)

# Create the Gradio interface
iface = gr.Interface(
    fn=process_pdf,
    inputs=gr.File(label="Upload PDF"),
    outputs="json",
    title="Extract Data from PDF",
    description="Upload a PDF file and get the JSON output of detected numbers."
)

# Launch the Gradio app
iface.launch()