Spaces:
Running
on
Zero
Running
on
Zero
title: Documents Restoration | |
emoji: π | |
colorFrom: purple | |
colorTo: indigo | |
sdk: gradio | |
sdk_version: 4.31.0 | |
app_file: app.py | |
pinned: false | |
short_description: Enhance photo of a document with selected approaches! | |
<div align=center> | |
# DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks | |
</div> | |
<p align="center"> | |
<img src="images/motivation.jpg" width="400"> | |
</p> | |
This is the official implementation of our paper [DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks](https://arxiv.org/abs/2405.04408). | |
## News | |
π₯ A comprehensive [Recommendation for Document Image Processing](https://github.com/ZZZHANG-jx/Recommendations-Document-Image-Processing) is available. | |
## Inference | |
1. Put MBD model weights [mbd.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./data/MBD/checkpoint/` | |
2. Put DocRes model weights [docres.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./checkpoints/` | |
3. Run the following script and the results will be saved in `./restorted/`. We have provided some distorted examples in `./input/`. | |
```bash | |
python inference.py --im_path ./input/for_dewarping.png --task dewarping --save_dtsprompt 1 | |
``` | |
- `--im_path`: the path of input document image | |
- `--task`: task that need to be executed, it must be one of _dewarping_, _deshadowing_, _appearance_, _deblurring_, _binarization_, or _end2end_ | |
- `--save_dtsprompt`: whether to save the DTSPrompt | |
## Evaluation | |
1. Dataset preparation, see [dataset instruction](./data/README.md) | |
2. Put MBD model weights [mbd.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `data/MBD/checkpoint/` | |
3. Put DocRes model weights [docres.pkl](https://1drv.ms/f/s!Ak15mSdV3Wy4iahoKckhDPVP5e2Czw?e=iClwdK) to `./checkpoints/` | |
2. Run the following script | |
```bash | |
python eval.py --dataset realdae | |
``` | |
- `--dataset`: dataset that need to be evaluated, it can be set as _dir300_, _kligler_, _jung_, _osr_, _docunet\_docaligner_, _realdae_, _tdd_, and _dibco18_. | |
## Training | |
1. Dataset preparation, see [dataset instruction](./data/README.md) | |
2. Specify the datasets_setting within `train.py` based on your dataset path and experimental setting. | |
3. Run the following script | |
```bash | |
bash start_train.sh | |
``` | |
## Citation: | |
``` | |
@inproceedings{zhangdocres2024, | |
Author = {Jiaxin Zhang, Dezhi Peng, Chongyu Liu , Peirong Zhang and Lianwen Jin}, | |
Booktitle = {In Proceedings of the IEEE/CV Conference on Computer Vision and Pattern Recognition}, | |
Title = {DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks}, | |
Year = {2024}} | |
``` | |
## β Star Rising | |
[![Star Rising](https://api.star-history.com/svg?repos=ZZZHANG-jx/DocRes&type=Timeline)](https://star-history.com/#ZZZHANG-jx/DocRes&Timeline) |