Spaces:
Runtime error
Runtime error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer | |
from trl import AutoModelForCausalLMWithValueHead | |
from ..extras.logging import get_logger | |
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms | |
from .adapter import init_adapter | |
from .model_utils.liger_kernel import apply_liger_kernel | |
from .model_utils.misc import register_autoclass | |
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model | |
from .model_utils.unsloth import load_unsloth_pretrained_model | |
from .model_utils.valuehead import load_valuehead_params | |
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin | |
from ..hparams import FinetuningArguments, ModelArguments | |
logger = get_logger(__name__) | |
class TokenizerModule(TypedDict): | |
tokenizer: "PreTrainedTokenizer" | |
processor: Optional["ProcessorMixin"] | |
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]: | |
r""" | |
Gets arguments to load config/tokenizer/model. | |
Note: including inplace operation of model_args. | |
""" | |
skip_check_imports() | |
model_args.model_name_or_path = try_download_model_from_ms(model_args) | |
return { | |
"trust_remote_code": True, | |
"cache_dir": model_args.cache_dir, | |
"revision": model_args.model_revision, | |
"token": model_args.hf_hub_token, | |
} | |
def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule": | |
r""" | |
Loads pretrained tokenizer and optionally loads processor. | |
Note: including inplace operation of model_args. | |
""" | |
init_kwargs = _get_init_kwargs(model_args) | |
config = load_config(model_args) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=model_args.use_fast_tokenizer, | |
split_special_tokens=model_args.split_special_tokens, | |
padding_side="right", | |
**init_kwargs, | |
) | |
except ValueError: # try the fast one | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
use_fast=True, | |
padding_side="right", | |
**init_kwargs, | |
) | |
if model_args.new_special_tokens is not None: | |
num_added_tokens = tokenizer.add_special_tokens( | |
dict(additional_special_tokens=model_args.new_special_tokens), | |
replace_additional_special_tokens=False, | |
) | |
logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens))) | |
if num_added_tokens > 0 and not model_args.resize_vocab: | |
model_args.resize_vocab = True | |
logger.warning("New tokens have been added, changed `resize_vocab` to True.") | |
patch_tokenizer(tokenizer) | |
try: | |
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs) | |
patch_processor(processor, config, tokenizer, model_args) | |
except Exception: | |
processor = None | |
# Avoid load tokenizer, see: | |
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324 | |
if "Processor" not in processor.__class__.__name__: | |
processor = None | |
return {"tokenizer": tokenizer, "processor": processor} | |
def load_config(model_args: "ModelArguments") -> "PretrainedConfig": | |
r""" | |
Loads model config. | |
""" | |
init_kwargs = _get_init_kwargs(model_args) | |
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs) | |
def load_model( | |
tokenizer: "PreTrainedTokenizer", | |
model_args: "ModelArguments", | |
finetuning_args: "FinetuningArguments", | |
is_trainable: bool = False, | |
add_valuehead: bool = False, | |
) -> "PreTrainedModel": | |
r""" | |
Loads pretrained model. | |
""" | |
init_kwargs = _get_init_kwargs(model_args) | |
config = load_config(model_args) | |
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable) | |
apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"])) | |
model = None | |
lazy_load = False | |
if model_args.use_unsloth: | |
if model_args.adapter_name_or_path is not None: | |
lazy_load = True | |
elif is_trainable: | |
model = load_unsloth_pretrained_model(config, model_args) | |
if model is None and not lazy_load: | |
init_kwargs["config"] = config | |
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path | |
if model_args.mixture_of_depths == "load": | |
model = load_mod_pretrained_model(**init_kwargs) | |
else: | |
if type(config) in AutoModelForVision2Seq._model_mapping.keys(): # assume built-in models | |
load_class = AutoModelForVision2Seq | |
else: | |
load_class = AutoModelForCausalLM | |
if model_args.train_from_scratch: | |
model = load_class.from_config(config) | |
else: | |
model = load_class.from_pretrained(**init_kwargs) | |
if model_args.mixture_of_depths == "convert": | |
model = convert_pretrained_model_to_mod(model, config, model_args) | |
if not lazy_load: | |
patch_model(model, tokenizer, model_args, is_trainable, add_valuehead) | |
register_autoclass(config, model, tokenizer) | |
model = init_adapter(config, model, model_args, finetuning_args, is_trainable) | |
if add_valuehead: | |
model = AutoModelForCausalLMWithValueHead.from_pretrained(model) | |
patch_valuehead_model(model) | |
if model_args.adapter_name_or_path is not None: | |
vhead_path = model_args.adapter_name_or_path[-1] | |
else: | |
vhead_path = model_args.model_name_or_path | |
vhead_params = load_valuehead_params(vhead_path, model_args) | |
if vhead_params is not None: | |
model.load_state_dict(vhead_params, strict=False) | |
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) | |
if not is_trainable: | |
model.requires_grad_(False) | |
for param in model.parameters(): | |
if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32: | |
param.data = param.data.to(model_args.compute_dtype) | |
model.eval() | |
else: | |
model.train() | |
trainable_params, all_param = count_parameters(model) | |
if is_trainable: | |
param_stats = "trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format( | |
trainable_params, all_param, 100 * trainable_params / all_param | |
) | |
else: | |
param_stats = "all params: {:,}".format(all_param) | |
logger.info(param_stats) | |
if model_args.print_param_status: | |
for name, param in model.named_parameters(): | |
print( | |
"name: {}, dtype: {}, device: {}, trainable: {}".format( | |
name, param.dtype, param.device, param.requires_grad | |
) | |
) | |
return model | |