Spaces:
Sleeping
Sleeping
File size: 7,869 Bytes
b308128 5e8be56 b308128 7438e40 b308128 5e8be56 b308128 ac4f141 b308128 1b46f72 b308128 1d66b8b c6666cc b308128 9f1cf26 c0ac2c5 7438e40 b308128 fa3ff72 1d66b8b c6666cc b308128 fa3ff72 b308128 04fc021 5e8be56 ac4f141 5e8be56 ac4f141 7029b0e ac4f141 037e269 ac4f141 037e269 04fc021 ac4f141 04fc021 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import sys
import json
import time
import openai
import pickle
import argparse
import requests
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
from fastchat.model import load_model, get_conversation_template, add_model_args
from nltk.tag.mapping import _UNIVERSAL_TAGS
import gradio as gr
from transformers import pipeline
demo = gr.Blocks()
uni_tags = list(_UNIVERSAL_TAGS)
uni_tags[-1] = 'PUNC'
bio_tags = ['B', 'I', 'O']
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
openai.api_key = " "
# determinant vs. determiner
# https://wikidiff.com/determiner/determinant
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
'Determiner',
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
][7:]
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
'Determiner', 'Cardinal Number', 'Particles or other function words',
'Words that cannot be assigned a POS tag', 'Punctuation']
ents = uni_tags + ents
ents_prompt = ents_prompt_uni_tags + ents_prompt
for i, j in zip(ents, ents_prompt):
print(i, j)
model_mapping = {
'gpt3.5': 'gpt2',
#'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
#'llama-7b': './llama/hf/7B',
}
with open('sample_uniform_1k_2.txt', 'r') as f:
selected_idx = f.readlines()
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
ptb = []
with open('ptb.jsonl', 'r') as f:
for l in f:
ptb.append(json.loads(l))
## Prompt 1
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
## Prompt 2
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
## Prompt 3
with open('demonstration_3_42_pos.txt', 'r') as f:
demon_pos = f.read()
with open('demonstration_3_42_chunk.txt', 'r') as f:
demon_chunk = f.read()
with open('demonstration_3_42_parse.txt', 'r') as f:
demon_parse = f.read()
# Your existing code
theme = gr.themes.Soft()
# issue get request for gpt 3.5
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
# Dropdown options for model and task
model_options = list(model_mapping.keys())
task_options = ['POS', 'Chunking'] # remove parsing
# Function to process text based on model and task
def process_text(tab, text):
if tab == 'POS Tab':
strategy1_format = template_all.format(text)
strategy2_format = prompt2_pos.format(text)
strategy3_format = demon_pos
vicuna_result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
vicuna_result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
vicuna_result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
return (vicuna_result1, vicuna_result2, vicuna_result3)
elif tab == 'Chunk Tab':
strategy1_format = template_all.format(text)
strategy2_format = prompt2_chunk.format(text)
strategy3_format = demon_chunk
result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
return (result1, result2, result3)
# Gradio interface
with demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
with gr.Tabs():
with gr.TabItem("POS", id="POS Tab"):
with gr.Row():
gr.Markdown("<center>Vicuna 7b</center>")
gr.Markdown("<center> LLaMA-7b </center>")
gr.Markdown("<center> GPT 3.5 </center>")
with gr.Row():
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
model2_S1_output = gr.Textbox(label=".")
model3_S1_output = gr.Textbox(label=".")
with gr.Row():
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
model2_S2_output = gr.Textbox(label=".")
model3_S2_output = gr.Textbox(label=".")
with gr.Row():
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
model2_S3_output = gr.Textbox(label=".")
model3_S3_output = gr.Textbox(label=".")
with gr.Row():
prompt_POS = gr.Textbox(show_label=False, placeholder="Enter prompt")
send_button_POS = gr.Button("Send", scale=0)
with gr.TabItem("Chunking", id="Chunk Tab"):
with gr.Row():
gr.Markdown("<center>Vicuna 7b</center>")
gr.Markdown("<center> LLaMA-7b </center>")
gr.Markdown("<center> GPT 3.5 </center>")
with gr.Row():
model1_S1_output = gr.Textbox(label="Strategy 1 QA")
model2_S1_output = gr.Textbox(label=".")
model3_S1_output = gr.Textbox(label=".")
with gr.Row():
model1_S2_output = gr.Textbox(label="Strategy 2 Instruction")
model2_S2_output = gr.Textbox(label=".")
model3_S2_output = gr.Textbox(label=".")
with gr.Row():
model1_S3_output = gr.Textbox(label="Strategy 3 Structured Prompting")
model2_S3_output = gr.Textbox(label=".")
model3_S3_output = gr.Textbox(label=".")
with gr.Row():
prompt_Chunk = gr.Textbox(id="prompt_Chunk", show_label=False, placeholder="Enter prompt")
send_button_Chunk = gr.Button("Send", scale=0)
send_button_POS.click(process_text, inputs=["POS Tab", prompt_Chunk], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
send_button_Chunk.click(process_text, inputs=["Chunk Tab", prompt_POS], outputs=[model1_S1_output, model1_S1_output, model1_S1_output])
demo.launch()
|