File size: 6,003 Bytes
45a7f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4f141
45a7f65
 
 
 
 
 
 
 
 
 
 
ac4f141
45a7f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4f141
 
 
45a7f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4f141
 
45a7f65
ac4f141
 
 
 
45a7f65
ac4f141
 
 
45a7f65
 
ac4f141
 
 
45a7f65
ac4f141
45a7f65
ac4f141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a7f65
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import sys
import json
import time
import openai
import pickle
import argparse
import requests
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer

from fastchat.model import load_model, get_conversation_template, add_model_args

from nltk.tag.mapping import _UNIVERSAL_TAGS

import gradio as gr
from transformers import pipeline

uni_tags = list(_UNIVERSAL_TAGS)
uni_tags[-1] = 'PUNC'

bio_tags = ['B', 'I', 'O']
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']

syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
 'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
 'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']

openai.api_key = " "

# determinant vs. determiner
# https://wikidiff.com/determiner/determinant
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
    'Determiner',
    'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
    'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
][7:]
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]


ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction', 
                        'Determiner', 'Cardinal Number', 'Particles or other function words', 
                        'Words that cannot be assigned a POS tag', 'Punctuation']

ents = uni_tags + ents
ents_prompt = ents_prompt_uni_tags + ents_prompt

for i, j in zip(ents, ents_prompt):
    print(i, j)

model_mapping = {
    'gpt3.5': 'gpt2',
    #'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
    #'llama-7b': './llama/hf/7B',
}

with open('sample_uniform_1k_2.txt', 'r') as f:
    selected_idx = f.readlines()
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]

ptb = []
with open('ptb.jsonl', 'r') as f:
    for l in f:
        ptb.append(json.loads(l))


## Prompt 1
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''

## Prompt 2
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''

prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''

## Prompt 3
with open('demonstration_3_42_pos.txt', 'r') as f:
    demon_pos = f.read()
with open('demonstration_3_42_chunk.txt', 'r') as f:
    demon_chunk = f.read()
with open('demonstration_3_42_parse.txt', 'r') as f:
    demon_parse = f.read()

# Your existing code
theme = gr.themes.Soft()

# issue get request for gpt 3.5
gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
#vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
#llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")

# Dropdown options for model and task
model_options = list(model_mapping.keys())
task_options = ['POS', 'Chunking'] # remove parsing


# Function to process text based on model and task
def process_text(model_name, task, text):
    gid_list = selected_idx[0:20]

    for gid in tqdm(gid_list, desc='Query'):
            text = ptb[gid]['text']
    
    if model_name == 'vicuna-7b': 
        if task == 'POS':
            strategy1_format = template_all.format(text)
            strategy2_format = prompt2_pos.format(text)
            strategy3_format = demon_pos

            result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
            result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
            result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
            return (result1, result2, result3)
        elif task == 'Chunking':
            strategy1_format = template_all.format(text)
            strategy2_format = prompt2_chunk.format(text)
            strategy3_format = demon_chunk

            result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
            result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
            result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
            return (result1, result2, result3)

# Gradio interface
iface = gr.Interface(
    fn=process_text,
    inputs=[
        gr.Dropdown(model_options, label="Select Model"),
        gr.Dropdown(task_options, label="Select Task"),
        gr.Textbox(label="Input Text", placeholder="Enter the text to process..."),
    ],
    outputs=[
        gr.Textbox(label="Strategy 1 QA Result"),
        gr.Textbox(label="Strategy 2 Instruction Result"),
        gr.Textbox(label="Strategy 3 Structured Prompting Result"),
    ],
    title = "LLM Evaluator For Linguistic Scrutiny",
    theme = theme,
    live=False,
)

iface.launch()