Spaces:
No application file
No application file
File size: 5,483 Bytes
5f84dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
<div align="center">
<img alt="LOGO" src="https://cdn.jsdelivr.net/gh/fishaudio/fish-diffusion@main/images/logo_512x512.png" width="256" height="256" />
# Fish Diffusion
<div>
<a href="https://github.com/fishaudio/fish-diffusion/actions/workflows/ci.yml">
<img alt="Build Status" src="https://img.shields.io/github/actions/workflow/status/fishaudio/fish-diffusion/ci.yml?style=flat-square&logo=GitHub">
</a>
<a href="https://hub.docker.com/r/lengyue233/fish-diffusion">
<img alt="Docker Hub" src="https://img.shields.io/docker/cloud/build/lengyue233/fish-diffusion?style=flat-square&logo=Docker&logoColor=white">
</a>
<a href="https://discord.gg/wbYSRBrW2E">
<img alt="Discord" src="https://img.shields.io/discord/1044927142900809739?color=%23738ADB&label=Discord&logo=discord&logoColor=white&style=flat-square">
</a>
</div>
</div>
------
An easy to understand TTS / SVS / SVC training framework.
> Check our [Wiki](https://fishaudio.github.io/fish-diffusion/) to get started!
[δΈζζζ‘£](README.md)
## Summary
Using Diffusion Model to solve different voice generating tasks. Compared with the original diffsvc repository, the advantages and disadvantages of this repository are as follows:
+ Support multi-speaker
+ The code structure of this repository is simpler and easier to understand, and all modules are decoupled
+ Support [441khz Diff Singer community vocoder](https://openvpi.github.io/vocoders/)
+ Support multi-machine multi-devices training, support half-precision training, save your training speed and memory
## Preparing the environment
The following commands need to be executed in the conda environment of python 3.10
```bash
# Install PyTorch related core dependencies, skip if installed
# Reference: https://pytorch.org/get-started/locally/
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# Install Poetry dependency management tool, skip if installed
# Reference: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Install the project dependencies
poetry install
```
## Vocoder preparation
Fish Diffusion requires the [OPENVPI 441khz NSF-HiFiGAN](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1) vocoder to generate audio.
### Automatic download
```bash
python tools/download_nsf_hifigan.py
```
If you are using the script to download the model, you can use the `--agree-license` parameter to agree to the [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license.
```bash
python tools/download_nsf_hifigan.py --agree-license
```
### Manual download
Download and unzip `nsf_hifigan_20221211.zip` from [441khz vocoder](https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1)
Copy the `nsf_hifigan` folder to the `checkpoints` directory (create if not exist)
## Dataset preparation
You only need to put the dataset into the `dataset` directory in the following file structure
```shell
dataset
ββββtrain
β ββββxxx1-xxx1.wav
β ββββ...
β ββββLxx-0xx8.wav
β ββββspeaker0 (Subdirectory is also supported)
β ββββxxx1-xxx1.wav
ββββvalid
ββββxx2-0xxx2.wav
ββββ...
ββββxxx7-xxx007.wav
```
```bash
# Extract all data features, such as pitch, text features, mel features, etc.
python tools/preprocessing/extract_features.py --config configs/svc_hubert_soft.py --path dataset --clean
```
## Baseline training
> The project is under active development, please backup your config file
> The project is under active development, please backup your config file
> The project is under active development, please backup your config file
```bash
# Single machine single card / multi-card training
python train.py --config configs/svc_hubert_soft.py
# Resume training
python train.py --config configs/svc_hubert_soft.py --resume [checkpoint]
# Fine-tune the pre-trained model
# Note: You should adjust the learning rate scheduler in the config file to warmup_cosine_finetune
python train.py --config configs/svc_hubert_soft.py --pretrained [checkpoint]
```
## Inference
```bash
# Inference using shell, you can use --help to view more parameters
python inference.py --config [config] \
--checkpoint [checkpoint] \
--input [input audio] \
--output [output audio]
# Gradio Web Inference, other parameters will be used as gradio default parameters
python inference/gradio_inference.py --config [config] \
--checkpoint [checkpoint] \
--gradio
```
## Convert a DiffSVC model to Fish Diffusion
```bash
python tools/diff_svc_converter.py --config configs/svc_hubert_soft_diff_svc.py \
--input-path [DiffSVC ckpt] \
--output-path [Fish Diffusion ckpt]
```
## Contributing
If you have any questions, please submit an issue or pull request.
You should run `tools/lint.sh` before submitting a pull request.
Real-time documentation can be generated by
```bash
sphinx-autobuild docs docs/_build/html
```
## Credits
+ [diff-svc original](https://github.com/prophesier/diff-svc)
+ [diff-svc optimized](https://github.com/innnky/diff-svc/)
+ [DiffSinger](https://github.com/openvpi/DiffSinger/)
+ [SpeechSplit](https://github.com/auspicious3000/SpeechSplit)
## Thanks to all contributors for their efforts
<a href="https://github.com/fishaudio/fish-diffusion/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=fishaudio/fish-diffusion" />
</a>
|