File size: 6,739 Bytes
5f84dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import json
import math
import os

import numpy as np
import soundfile as sf
import torch
from fish_audio_preprocess.utils import loudness_norm
from loguru import logger
from mmengine import Config

from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
from fish_diffusion.utils.tensor import repeat_expand
from train import FishDiffusion


@torch.no_grad()
def inference(
    config,
    checkpoint,
    input_path,
    output_path,
    dictionary_path="dictionaries/opencpop-strict.txt",
    speaker_id=0,
    sampler_interval=None,
    sampler_progress=False,
    device="cuda",
):
    """Inference

    Args:
        config: config
        checkpoint: checkpoint path
        input_path: input path
        output_path: output path
        dictionary_path: dictionary path
        speaker_id: speaker id
        sampler_interval: sampler interval, lower value means higher quality
        sampler_progress: show sampler progress
        device: device
    """

    if sampler_interval is not None:
        config.model.diffusion.sampler_interval = sampler_interval

    if os.path.isdir(checkpoint):
        # Find the latest checkpoint
        checkpoints = sorted(os.listdir(checkpoint))
        logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
        checkpoint = os.path.join(checkpoint, checkpoints[-1])

    # Load models
    phoneme_features_extractor = FEATURE_EXTRACTORS.build(
        config.preprocessing.phoneme_features_extractor
    ).to(device)
    phoneme_features_extractor.eval()

    model = FishDiffusion(config)
    state_dict = torch.load(checkpoint, map_location="cpu")

    if "state_dict" in state_dict:  # Checkpoint is saved by pl
        state_dict = state_dict["state_dict"]

    model.load_state_dict(state_dict)
    model.to(device)
    model.eval()

    pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
    assert pitch_extractor is not None, "Pitch extractor not found"

    # Load dictionary
    phones_list = []
    for i in open(dictionary_path):
        _, phones = i.strip().split("\t")
        for j in phones.split():
            if j not in phones_list:
                phones_list.append(j)

    phones_list = ["<PAD>", "<EOS>", "<UNK>", "AP", "SP"] + sorted(phones_list)

    # Load ds file
    with open(input_path) as f:
        ds = json.load(f)

    generated_audio = np.zeros(
        math.ceil(
            (
                float(ds[-1]["offset"])
                + float(ds[-1]["f0_timestep"]) * len(ds[-1]["f0_seq"].split(" "))
            )
            * config.sampling_rate
        )
    )

    for idx, chunk in enumerate(ds):
        offset = float(chunk["offset"])

        phones = np.array([phones_list.index(i) for i in chunk["ph_seq"].split(" ")])
        durations = np.array([0] + [float(i) for i in chunk["ph_dur"].split(" ")])
        durations = np.cumsum(durations)

        f0_timestep = float(chunk["f0_timestep"])
        f0_seq = torch.FloatTensor([float(i) for i in chunk["f0_seq"].split(" ")])
        f0_seq *= 2 ** (6 / 12)

        total_duration = f0_timestep * len(f0_seq)

        logger.info(
            f"Processing segment {idx + 1}/{len(ds)}, duration: {total_duration:.2f}s"
        )

        n_mels = round(total_duration * config.sampling_rate / 512)
        f0_seq = repeat_expand(f0_seq, n_mels, mode="linear")
        f0_seq = f0_seq.to(device)

        # aligned is in 20ms
        aligned_phones = torch.zeros(int(total_duration * 50), dtype=torch.long)
        for i, phone in enumerate(phones):
            start = int(durations[i] / f0_timestep / 4)
            end = int(durations[i + 1] / f0_timestep / 4)
            aligned_phones[start:end] = phone

        # Extract text features
        phoneme_features = phoneme_features_extractor.forward(
            aligned_phones.to(device)
        )[0]

        phoneme_features = repeat_expand(phoneme_features, n_mels).T

        # Predict
        src_lens = torch.tensor([phoneme_features.shape[0]]).to(device)

        features = model.model.forward_features(
            speakers=torch.tensor([speaker_id]).long().to(device),
            contents=phoneme_features[None].to(device),
            src_lens=src_lens,
            max_src_len=max(src_lens),
            mel_lens=src_lens,
            max_mel_len=max(src_lens),
            pitches=f0_seq[None],
        )

        result = model.model.diffusion(features["features"], progress=sampler_progress)
        wav = model.vocoder.spec2wav(result[0].T, f0=f0_seq).cpu().numpy()
        start = round(offset * config.sampling_rate)
        max_wav_len = generated_audio.shape[-1] - start
        generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]

    # Loudness normalization
    generated_audio = loudness_norm.loudness_norm(generated_audio, config.sampling_rate)

    sf.write(output_path, generated_audio, config.sampling_rate)
    logger.info("Done")


def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--config",
        type=str,
        default="configs/svc_hubert_soft.py",
        help="Path to the config file",
    )

    parser.add_argument(
        "--checkpoint",
        type=str,
        required=True,
        help="Path to the checkpoint file",
    )

    parser.add_argument(
        "--input",
        type=str,
        required=True,
        help="Path to the input audio file",
    )

    parser.add_argument(
        "--output",
        type=str,
        required=True,
        help="Path to the output audio file",
    )

    parser.add_argument(
        "--speaker_id",
        type=int,
        default=0,
        help="Speaker id",
    )

    parser.add_argument(
        "--sampler_interval",
        type=int,
        default=None,
        required=False,
        help="Sampler interval, if not specified, will be taken from config",
    )

    parser.add_argument(
        "--sampler_progress",
        action="store_true",
        help="Show sampler progress",
    )

    parser.add_argument(
        "--device",
        type=str,
        default=None,
        required=False,
        help="Device to use",
    )

    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()

    if args.device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device(args.device)

    inference(
        Config.fromfile(args.config),
        args.checkpoint,
        args.input,
        args.output,
        speaker_id=args.speaker_id,
        sampler_interval=args.sampler_interval,
        sampler_progress=args.sampler_progress,
        device=device,
    )