Spaces:
No application file
No application file
File size: 6,739 Bytes
5f84dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import argparse
import json
import math
import os
import numpy as np
import soundfile as sf
import torch
from fish_audio_preprocess.utils import loudness_norm
from loguru import logger
from mmengine import Config
from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
from fish_diffusion.utils.tensor import repeat_expand
from train import FishDiffusion
@torch.no_grad()
def inference(
config,
checkpoint,
input_path,
output_path,
dictionary_path="dictionaries/opencpop-strict.txt",
speaker_id=0,
sampler_interval=None,
sampler_progress=False,
device="cuda",
):
"""Inference
Args:
config: config
checkpoint: checkpoint path
input_path: input path
output_path: output path
dictionary_path: dictionary path
speaker_id: speaker id
sampler_interval: sampler interval, lower value means higher quality
sampler_progress: show sampler progress
device: device
"""
if sampler_interval is not None:
config.model.diffusion.sampler_interval = sampler_interval
if os.path.isdir(checkpoint):
# Find the latest checkpoint
checkpoints = sorted(os.listdir(checkpoint))
logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
checkpoint = os.path.join(checkpoint, checkpoints[-1])
# Load models
phoneme_features_extractor = FEATURE_EXTRACTORS.build(
config.preprocessing.phoneme_features_extractor
).to(device)
phoneme_features_extractor.eval()
model = FishDiffusion(config)
state_dict = torch.load(checkpoint, map_location="cpu")
if "state_dict" in state_dict: # Checkpoint is saved by pl
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict)
model.to(device)
model.eval()
pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
assert pitch_extractor is not None, "Pitch extractor not found"
# Load dictionary
phones_list = []
for i in open(dictionary_path):
_, phones = i.strip().split("\t")
for j in phones.split():
if j not in phones_list:
phones_list.append(j)
phones_list = ["<PAD>", "<EOS>", "<UNK>", "AP", "SP"] + sorted(phones_list)
# Load ds file
with open(input_path) as f:
ds = json.load(f)
generated_audio = np.zeros(
math.ceil(
(
float(ds[-1]["offset"])
+ float(ds[-1]["f0_timestep"]) * len(ds[-1]["f0_seq"].split(" "))
)
* config.sampling_rate
)
)
for idx, chunk in enumerate(ds):
offset = float(chunk["offset"])
phones = np.array([phones_list.index(i) for i in chunk["ph_seq"].split(" ")])
durations = np.array([0] + [float(i) for i in chunk["ph_dur"].split(" ")])
durations = np.cumsum(durations)
f0_timestep = float(chunk["f0_timestep"])
f0_seq = torch.FloatTensor([float(i) for i in chunk["f0_seq"].split(" ")])
f0_seq *= 2 ** (6 / 12)
total_duration = f0_timestep * len(f0_seq)
logger.info(
f"Processing segment {idx + 1}/{len(ds)}, duration: {total_duration:.2f}s"
)
n_mels = round(total_duration * config.sampling_rate / 512)
f0_seq = repeat_expand(f0_seq, n_mels, mode="linear")
f0_seq = f0_seq.to(device)
# aligned is in 20ms
aligned_phones = torch.zeros(int(total_duration * 50), dtype=torch.long)
for i, phone in enumerate(phones):
start = int(durations[i] / f0_timestep / 4)
end = int(durations[i + 1] / f0_timestep / 4)
aligned_phones[start:end] = phone
# Extract text features
phoneme_features = phoneme_features_extractor.forward(
aligned_phones.to(device)
)[0]
phoneme_features = repeat_expand(phoneme_features, n_mels).T
# Predict
src_lens = torch.tensor([phoneme_features.shape[0]]).to(device)
features = model.model.forward_features(
speakers=torch.tensor([speaker_id]).long().to(device),
contents=phoneme_features[None].to(device),
src_lens=src_lens,
max_src_len=max(src_lens),
mel_lens=src_lens,
max_mel_len=max(src_lens),
pitches=f0_seq[None],
)
result = model.model.diffusion(features["features"], progress=sampler_progress)
wav = model.vocoder.spec2wav(result[0].T, f0=f0_seq).cpu().numpy()
start = round(offset * config.sampling_rate)
max_wav_len = generated_audio.shape[-1] - start
generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]
# Loudness normalization
generated_audio = loudness_norm.loudness_norm(generated_audio, config.sampling_rate)
sf.write(output_path, generated_audio, config.sampling_rate)
logger.info("Done")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
default="configs/svc_hubert_soft.py",
help="Path to the config file",
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint file",
)
parser.add_argument(
"--input",
type=str,
required=True,
help="Path to the input audio file",
)
parser.add_argument(
"--output",
type=str,
required=True,
help="Path to the output audio file",
)
parser.add_argument(
"--speaker_id",
type=int,
default=0,
help="Speaker id",
)
parser.add_argument(
"--sampler_interval",
type=int,
default=None,
required=False,
help="Sampler interval, if not specified, will be taken from config",
)
parser.add_argument(
"--sampler_progress",
action="store_true",
help="Show sampler progress",
)
parser.add_argument(
"--device",
type=str,
default=None,
required=False,
help="Device to use",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device(args.device)
inference(
Config.fromfile(args.config),
args.checkpoint,
args.input,
args.output,
speaker_id=args.speaker_id,
sampler_interval=args.sampler_interval,
sampler_progress=args.sampler_progress,
device=device,
)
|