Spaces:
No application file
No application file
File size: 12,443 Bytes
5f84dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import argparse
import json
import os
from functools import partial
from typing import Union
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
from fish_audio_preprocess.utils import loudness_norm, separate_audio
from loguru import logger
from mmengine import Config
from fish_diffusion.feature_extractors import FEATURE_EXTRACTORS, PITCH_EXTRACTORS
from fish_diffusion.utils.audio import get_mel_from_audio, slice_audio
from fish_diffusion.utils.inference import load_checkpoint
from fish_diffusion.utils.tensor import repeat_expand
@torch.no_grad()
def inference(
config,
checkpoint,
input_path,
output_path,
speaker_id=0,
pitch_adjust=0,
silence_threshold=30,
max_slice_duration=5,
extract_vocals=True,
merge_non_vocals=True,
vocals_loudness_gain=0.0,
sampler_interval=None,
sampler_progress=False,
device="cuda",
gradio_progress=None,
):
"""Inference
Args:
config: config
checkpoint: checkpoint path
input_path: input path
output_path: output path
speaker_id: speaker id
pitch_adjust: pitch adjust
silence_threshold: silence threshold of librosa.effects.split
max_slice_duration: maximum duration of each slice
extract_vocals: extract vocals
merge_non_vocals: merge non-vocals, only works when extract_vocals is True
vocals_loudness_gain: loudness gain of vocals (dB)
sampler_interval: sampler interval, lower value means higher quality
sampler_progress: show sampler progress
device: device
gradio_progress: gradio progress callback
"""
if sampler_interval is not None:
config.model.diffusion.sampler_interval = sampler_interval
if os.path.isdir(checkpoint):
# Find the latest checkpoint
checkpoints = sorted(os.listdir(checkpoint))
logger.info(f"Found {len(checkpoints)} checkpoints, using {checkpoints[-1]}")
checkpoint = os.path.join(checkpoint, checkpoints[-1])
audio, sr = librosa.load(input_path, sr=config.sampling_rate, mono=True)
# Extract vocals
if extract_vocals:
logger.info("Extracting vocals...")
if gradio_progress is not None:
gradio_progress(0, "Extracting vocals...")
model = separate_audio.init_model("htdemucs", device=device)
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.samplerate)[None]
# To two channels
audio = np.concatenate([audio, audio], axis=0)
audio = torch.from_numpy(audio).to(device)
tracks = separate_audio.separate_audio(
model, audio, shifts=1, num_workers=0, progress=True
)
audio = separate_audio.merge_tracks(tracks, filter=["vocals"]).cpu().numpy()
non_vocals = (
separate_audio.merge_tracks(tracks, filter=["drums", "bass", "other"])
.cpu()
.numpy()
)
audio = librosa.resample(audio[0], orig_sr=model.samplerate, target_sr=sr)
non_vocals = librosa.resample(
non_vocals[0], orig_sr=model.samplerate, target_sr=sr
)
# Normalize loudness
non_vocals = loudness_norm.loudness_norm(non_vocals, sr)
# Normalize loudness
audio = loudness_norm.loudness_norm(audio, sr)
# Slice into segments
segments = list(
slice_audio(
audio, sr, max_duration=max_slice_duration, top_db=silence_threshold
)
)
logger.info(f"Sliced into {len(segments)} segments")
# Load models
text_features_extractor = FEATURE_EXTRACTORS.build(
config.preprocessing.text_features_extractor
).to(device)
text_features_extractor.eval()
model = load_checkpoint(config, checkpoint, device=device)
pitch_extractor = PITCH_EXTRACTORS.build(config.preprocessing.pitch_extractor)
assert pitch_extractor is not None, "Pitch extractor not found"
generated_audio = np.zeros_like(audio)
audio_torch = torch.from_numpy(audio).to(device)[None]
for idx, (start, end) in enumerate(segments):
if gradio_progress is not None:
gradio_progress(idx / len(segments), "Generating audio...")
segment = audio_torch[:, start:end]
logger.info(
f"Processing segment {idx + 1}/{len(segments)}, duration: {segment.shape[-1] / sr:.2f}s"
)
# Extract mel
mel = get_mel_from_audio(segment, sr)
# Extract pitch (f0)
pitch = pitch_extractor(segment, sr, pad_to=mel.shape[-1]).float()
pitch *= 2 ** (pitch_adjust / 12)
# Extract text features
text_features = text_features_extractor(segment, sr)[0]
text_features = repeat_expand(text_features, mel.shape[-1]).T
# Predict
src_lens = torch.tensor([mel.shape[-1]]).to(device)
features = model.model.forward_features(
speakers=torch.tensor([speaker_id]).long().to(device),
contents=text_features[None].to(device),
src_lens=src_lens,
max_src_len=max(src_lens),
mel_lens=src_lens,
max_mel_len=max(src_lens),
pitches=pitch[None].to(device),
)
result = model.model.diffusion(features["features"], progress=sampler_progress)
wav = model.vocoder.spec2wav(result[0].T, f0=pitch).cpu().numpy()
max_wav_len = generated_audio.shape[-1] - start
generated_audio[start : start + wav.shape[-1]] = wav[:max_wav_len]
# Loudness normalization
generated_audio = loudness_norm.loudness_norm(generated_audio, sr)
# Loudness gain
loudness_float = 10 ** (vocals_loudness_gain / 20)
generated_audio = generated_audio * loudness_float
# Merge non-vocals
if extract_vocals and merge_non_vocals:
generated_audio = (generated_audio + non_vocals) / 2
logger.info("Done")
if output_path is not None:
sf.write(output_path, generated_audio, sr)
return generated_audio, sr
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
required=True,
help="Path to the config file",
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint file",
)
parser.add_argument(
"--gradio",
action="store_true",
help="Run in gradio mode",
)
parser.add_argument(
"--gradio_share",
action="store_true",
help="Share gradio app",
)
parser.add_argument(
"--input",
type=str,
required=False,
help="Path to the input audio file",
)
parser.add_argument(
"--output",
type=str,
required=False,
help="Path to the output audio file",
)
parser.add_argument(
"--speaker_id",
type=int,
default=0,
help="Speaker id",
)
parser.add_argument(
"--speaker_mapping",
type=str,
default=None,
help="Speaker mapping file (gradio mode only)",
)
parser.add_argument(
"--pitch_adjust",
type=int,
default=0,
help="Pitch adjustment in semitones",
)
parser.add_argument(
"--extract_vocals",
action="store_true",
help="Extract vocals",
)
parser.add_argument(
"--merge_non_vocals",
action="store_true",
help="Merge non-vocals",
)
parser.add_argument(
"--vocals_loudness_gain",
type=float,
default=0,
help="Loudness gain for vocals",
)
parser.add_argument(
"--sampler_interval",
type=int,
default=None,
required=False,
help="Sampler interval, if not specified, will be taken from config",
)
parser.add_argument(
"--sampler_progress",
action="store_true",
help="Show sampler progress",
)
parser.add_argument(
"--device",
type=str,
default=None,
required=False,
help="Device to use",
)
return parser.parse_args()
def run_inference(
config_path: str,
model_path: str,
input_path: str,
speaker: Union[int, str],
pitch_adjust: int,
sampler_interval: int,
extract_vocals: bool,
device: str,
progress=gr.Progress(),
speaker_mapping: dict = None,
):
if speaker_mapping is not None and isinstance(speaker, str):
speaker = speaker_mapping[speaker]
audio, sr = inference(
Config.fromfile(config_path),
model_path,
input_path=input_path,
output_path=None,
speaker_id=speaker,
pitch_adjust=pitch_adjust,
sampler_interval=round(sampler_interval),
extract_vocals=extract_vocals,
merge_non_vocals=False,
device=device,
gradio_progress=progress,
)
return (sr, audio)
def launch_gradio(args):
with gr.Blocks(title="Fish Diffusion") as app:
gr.Markdown("# Fish Diffusion SVC Inference")
with gr.Row():
with gr.Column():
input_audio = gr.Audio(
label="Input Audio",
type="filepath",
value=args.input,
)
output_audio = gr.Audio(label="Output Audio")
with gr.Column():
if args.speaker_mapping is not None:
speaker_mapping = json.load(open(args.speaker_mapping))
speaker = gr.Dropdown(
label="Speaker Name (Used for Multi-Speaker Models)",
choices=list(speaker_mapping.keys()),
value=list(speaker_mapping.keys())[0],
)
else:
speaker_mapping = None
speaker = gr.Number(
label="Speaker ID (Used for Multi-Speaker Models)",
value=args.speaker_id,
)
pitch_adjust = gr.Number(
label="Pitch Adjust (Semitones)", value=args.pitch_adjust
)
sampler_interval = gr.Slider(
label="Sampler Interval (⬆️ Faster Generation, ⬇️ Better Quality)",
value=args.sampler_interval or 10,
minimum=1,
maximum=100,
)
extract_vocals = gr.Checkbox(
label="Extract Vocals (For low quality audio)",
value=args.extract_vocals,
)
device = gr.Radio(
label="Device", choices=["cuda", "cpu"], value=args.device or "cuda"
)
run_btn = gr.Button(label="Run")
run_btn.click(
partial(
run_inference,
args.config,
args.checkpoint,
speaker_mapping=speaker_mapping,
),
[
input_audio,
speaker,
pitch_adjust,
sampler_interval,
extract_vocals,
device,
],
output_audio,
)
app.queue(concurrency_count=2).launch(share=args.gradio_share)
if __name__ == "__main__":
args = parse_args()
assert args.gradio or (
args.input is not None and args.output is not None
), "Either --gradio or --input and --output should be specified"
if args.device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device(args.device)
if args.gradio:
args.device = device
launch_gradio(args)
else:
inference(
Config.fromfile(args.config),
args.checkpoint,
args.input,
args.output,
speaker_id=args.speaker_id,
pitch_adjust=args.pitch_adjust,
extract_vocals=args.extract_vocals,
merge_non_vocals=args.merge_non_vocals,
vocals_loudness_gain=args.vocals_loudness_gain,
sampler_interval=args.sampler_interval,
sampler_progress=args.sampler_progress,
device=device,
)
|