Spaces:
Runtime error
Runtime error
''' | |
Tool for generating editing videos across different domains. | |
Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains | |
and combine the resulting images into a video. | |
Example run command: | |
python generate_videos.py --ckpt /model_dir/pixar.pt \ | |
/model_dir/ukiyoe.pt \ | |
/model_dir/edvard_munch.pt \ | |
/model_dir/botero.pt \ | |
--out_dir /output/video/ \ | |
--source_latent /latents/latent000.npy \ | |
--target_latents /latents/ | |
''' | |
import os | |
import argparse | |
import torch | |
from torchvision import utils | |
from model.sg2_model import Generator | |
from tqdm import tqdm | |
from pathlib import Path | |
import numpy as np | |
import subprocess | |
import shutil | |
import copy | |
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"] | |
SUGGESTED_DISTANCES = { | |
"pose": (3.0, -3.0), | |
"smile": (2.0, -2.0), | |
"age": (4.0, -4.0), | |
"gender": (3.0, -3.0), | |
"hair_length": (None, -4.0), | |
"beard": (2.0, None) | |
} | |
def project_code(latent_code, boundary, distance=3.0): | |
if len(boundary) == 2: | |
boundary = boundary.reshape(1, 1, -1) | |
return latent_code + distance * boundary | |
def generate_frames(args, source_latent, g_ema_list, output_dir): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
alphas = np.linspace(0, 1, num=20) | |
interpolate_func = interpolate_with_boundaries # default | |
if args.target_latents: # if provided with targets | |
interpolate_func = interpolate_with_target_latents | |
if args.unedited_frames: # if only interpolating through generators | |
interpolate_func = duplicate_latent | |
latents = interpolate_func(args, source_latent, alphas) | |
segments = len(g_ema_list) - 1 | |
if segments: | |
segment_length = len(latents) / segments | |
g_ema = copy.deepcopy(g_ema_list[0]) | |
src_pars = dict(g_ema.named_parameters()) | |
mix_pars = [dict(model.named_parameters()) for model in g_ema_list] | |
else: | |
g_ema = g_ema_list[0] | |
print("Generating frames for video...") | |
for idx, latent in tqdm(enumerate(latents), total=len(latents)): | |
if segments: | |
mix_alpha = (idx % segment_length) * 1.0 / segment_length | |
segment_id = int(idx // segment_length) | |
for k in src_pars.keys(): | |
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha) | |
if idx == 0 or segments or latent is not latents[idx - 1]: | |
w = torch.from_numpy(latent).float().to(device) | |
with torch.no_grad(): | |
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False) | |
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1)) | |
def interpolate_forward_backward(source_latent, target_latent, alphas): | |
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target | |
latents_backward = latents_forward[::-1] # interpolate from target to source | |
return latents_forward + [target_latent] * 20 + latents_backward # forward + short delay at target + return | |
def duplicate_latent(args, source_latent, alphas): | |
return [source_latent for _ in range(args.unedited_frames)] | |
def interpolate_with_boundaries(args, source_latent, alphas): | |
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length'] | |
# interpolate latent codes with all targets | |
print("Interpolating latent codes...") | |
boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries") | |
boundaries_and_distances = [] | |
for direction_type in edit_directions: | |
distances = SUGGESTED_DISTANCES[direction_type] | |
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy() | |
for distance in distances: | |
if distance: | |
boundaries_and_distances.append((boundary, distance)) | |
latents = [] | |
for boundary, distance in boundaries_and_distances: | |
target_latent = project_code(source_latent, boundary, distance) | |
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas)) | |
return latents | |
def interpolate_with_target_latents(args, source_latent, alphas): | |
# interpolate latent codes with all targets | |
print("Interpolating latent codes...") | |
latents = [] | |
for target_latent_path in args.target_latents: | |
if target_latent_path == args.source_latent: | |
continue | |
target_latent = np.load(target_latent_path, allow_pickle=True) | |
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas)) | |
return latents | |
def video_from_interpolations(fps, output_dir): | |
# combine frames to a video | |
command = ["ffmpeg", | |
"-r", f"{fps}", | |
"-i", f"{output_dir}/%03d.jpg", | |
"-c:v", "libx264", | |
"-vf", f"fps={fps}", | |
"-pix_fmt", "yuv420p", | |
f"{output_dir}/out.mp4"] | |
subprocess.call(command) | |
def merge_videos(output_dir, num_subdirs): | |
output_file = os.path.join(output_dir, "combined.mp4") | |
if num_subdirs == 1: # if we only have one video, just copy it over | |
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file) | |
else: # otherwise merge using ffmpeg | |
command = ["ffmpeg"] | |
for dir in range(num_subdirs): | |
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")]) | |
sqrt_subdirs = int(num_subdirs ** .5) | |
if (sqrt_subdirs ** 2) != num_subdirs: | |
raise ValueError("Number of checkpoints cannot be arranged in a square grid") | |
command.append("-filter_complex") | |
filter_string = "" | |
vstack_string = "" | |
for row in range(sqrt_subdirs): | |
row_str = "" | |
for col in range(sqrt_subdirs): | |
row_str += f"[{row * sqrt_subdirs + col}:v]" | |
letter = chr(ord('A')+row) | |
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];" | |
vstack_string += f"[{letter}]" | |
filter_string += row_str | |
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]" | |
filter_string += vstack_string | |
command.extend([filter_string, "-map", "[out]", output_file]) | |
subprocess.call(command) | |
def vid_to_gif(vid_path, output_dir, scale=256, fps=35): | |
command = ["ffmpeg", | |
"-i", f"{vid_path}", | |
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse", | |
"-loop", "0", | |
f"{output_dir}/out.gif"] | |
subprocess.call(command) | |
if __name__ == '__main__': | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--size', type=int, default=1024) | |
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.") | |
parser.add_argument('--channel_multiplier', type=int, default=2) | |
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed") | |
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code") | |
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.") | |
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video") | |
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.') | |
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}") | |
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.") | |
args = parser.parse_args() | |
os.makedirs(args.out_dir, exist_ok=True) | |
if not args.force and os.listdir(args.out_dir): | |
print("Output directory is not empty. Either delete the directory content or re-run with -f.") | |
exit(0) | |
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]): | |
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")] | |
args.target_latents = sorted(args.target_latents) | |
args.latent = 512 | |
args.n_mlp = 8 | |
g_ema = Generator( | |
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier | |
).to(device) | |
source_latent = np.load(args.source_latent, allow_pickle=True) | |
for idx, ckpt_path in enumerate(args.ckpt): | |
print(f"Generating video using checkpoint: {ckpt_path}") | |
checkpoint = torch.load(ckpt_path) | |
g_ema.load_state_dict(checkpoint['g_ema']) | |
output_dir = os.path.join(args.out_dir, str(idx)) | |
os.makedirs(output_dir) | |
generate_frames(args, source_latent, [g_ema], output_dir) | |
video_from_interpolations(args.fps, output_dir) | |
merge_videos(args.out_dir, len(args.ckpt)) | |