StyleGAN-NADA / generate_videos.py
rinong's picture
Cuda uses now check for device
720df82
raw
history blame
10.2 kB
'''
Tool for generating editing videos across different domains.
Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains
and combine the resulting images into a video.
Example run command:
python generate_videos.py --ckpt /model_dir/pixar.pt \
/model_dir/ukiyoe.pt \
/model_dir/edvard_munch.pt \
/model_dir/botero.pt \
--out_dir /output/video/ \
--source_latent /latents/latent000.npy \
--target_latents /latents/
'''
import os
import argparse
import torch
from torchvision import utils
from model.sg2_model import Generator
from tqdm import tqdm
from pathlib import Path
import numpy as np
import subprocess
import shutil
import copy
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
SUGGESTED_DISTANCES = {
"pose": (3.0, -3.0),
"smile": (2.0, -2.0),
"age": (4.0, -4.0),
"gender": (3.0, -3.0),
"hair_length": (None, -4.0),
"beard": (2.0, None)
}
def project_code(latent_code, boundary, distance=3.0):
if len(boundary) == 2:
boundary = boundary.reshape(1, 1, -1)
return latent_code + distance * boundary
def generate_frames(args, source_latent, g_ema_list, output_dir):
device = "cuda" if torch.cuda.is_available() else "cpu"
alphas = np.linspace(0, 1, num=20)
interpolate_func = interpolate_with_boundaries # default
if args.target_latents: # if provided with targets
interpolate_func = interpolate_with_target_latents
if args.unedited_frames: # if only interpolating through generators
interpolate_func = duplicate_latent
latents = interpolate_func(args, source_latent, alphas)
segments = len(g_ema_list) - 1
if segments:
segment_length = len(latents) / segments
g_ema = copy.deepcopy(g_ema_list[0])
src_pars = dict(g_ema.named_parameters())
mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
else:
g_ema = g_ema_list[0]
print("Generating frames for video...")
for idx, latent in tqdm(enumerate(latents), total=len(latents)):
if segments:
mix_alpha = (idx % segment_length) * 1.0 / segment_length
segment_id = int(idx // segment_length)
for k in src_pars.keys():
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
if idx == 0 or segments or latent is not latents[idx - 1]:
w = torch.from_numpy(latent).float().to(device)
with torch.no_grad():
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))
def interpolate_forward_backward(source_latent, target_latent, alphas):
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
latents_backward = latents_forward[::-1] # interpolate from target to source
return latents_forward + [target_latent] * 20 + latents_backward # forward + short delay at target + return
def duplicate_latent(args, source_latent, alphas):
return [source_latent for _ in range(args.unedited_frames)]
def interpolate_with_boundaries(args, source_latent, alphas):
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
# interpolate latent codes with all targets
print("Interpolating latent codes...")
boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries")
boundaries_and_distances = []
for direction_type in edit_directions:
distances = SUGGESTED_DISTANCES[direction_type]
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy()
for distance in distances:
if distance:
boundaries_and_distances.append((boundary, distance))
latents = []
for boundary, distance in boundaries_and_distances:
target_latent = project_code(source_latent, boundary, distance)
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
return latents
def interpolate_with_target_latents(args, source_latent, alphas):
# interpolate latent codes with all targets
print("Interpolating latent codes...")
latents = []
for target_latent_path in args.target_latents:
if target_latent_path == args.source_latent:
continue
target_latent = np.load(target_latent_path, allow_pickle=True)
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
return latents
def video_from_interpolations(fps, output_dir):
# combine frames to a video
command = ["ffmpeg",
"-r", f"{fps}",
"-i", f"{output_dir}/%03d.jpg",
"-c:v", "libx264",
"-vf", f"fps={fps}",
"-pix_fmt", "yuv420p",
f"{output_dir}/out.mp4"]
subprocess.call(command)
def merge_videos(output_dir, num_subdirs):
output_file = os.path.join(output_dir, "combined.mp4")
if num_subdirs == 1: # if we only have one video, just copy it over
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
else: # otherwise merge using ffmpeg
command = ["ffmpeg"]
for dir in range(num_subdirs):
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
sqrt_subdirs = int(num_subdirs ** .5)
if (sqrt_subdirs ** 2) != num_subdirs:
raise ValueError("Number of checkpoints cannot be arranged in a square grid")
command.append("-filter_complex")
filter_string = ""
vstack_string = ""
for row in range(sqrt_subdirs):
row_str = ""
for col in range(sqrt_subdirs):
row_str += f"[{row * sqrt_subdirs + col}:v]"
letter = chr(ord('A')+row)
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
vstack_string += f"[{letter}]"
filter_string += row_str
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
filter_string += vstack_string
command.extend([filter_string, "-map", "[out]", output_file])
subprocess.call(command)
def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
command = ["ffmpeg",
"-i", f"{vid_path}",
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",
"-loop", "0",
f"{output_dir}/out.gif"]
subprocess.call(command)
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
parser.add_argument('--size', type=int, default=1024)
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
if not args.force and os.listdir(args.out_dir):
print("Output directory is not empty. Either delete the directory content or re-run with -f.")
exit(0)
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
args.target_latents = sorted(args.target_latents)
args.latent = 512
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
source_latent = np.load(args.source_latent, allow_pickle=True)
for idx, ckpt_path in enumerate(args.ckpt):
print(f"Generating video using checkpoint: {ckpt_path}")
checkpoint = torch.load(ckpt_path)
g_ema.load_state_dict(checkpoint['g_ema'])
output_dir = os.path.join(args.out_dir, str(idx))
os.makedirs(output_dir)
generate_frames(args, source_latent, [g_ema], output_dir)
video_from_interpolations(args.fps, output_dir)
merge_videos(args.out_dir, len(args.ckpt))