Spaces:
Runtime error
Runtime error
import heapq | |
import itertools | |
from abc import ABC, abstractmethod | |
from collections import defaultdict | |
from operator import itemgetter | |
from typing import List, Dict, Tuple | |
from typing import Sequence | |
import numpy as np | |
import torch | |
from bert_score import BERTScorer | |
from nltk import PorterStemmer | |
from spacy.tokens import Doc, Span | |
from toolz import itertoolz | |
from transformers import AutoTokenizer | |
from transformers.tokenization_utils_base import PaddingStrategy | |
class EmbeddingModel(ABC): | |
def embed( | |
self, | |
sents: List[Span] | |
): | |
pass | |
class ContextualEmbedding(EmbeddingModel): | |
def __init__(self, model, tokenizer_name, max_length): | |
self.model = model | |
self.tokenizer = SpacyHuggingfaceTokenizer(tokenizer_name, max_length) | |
self._device = model.device | |
def embed( | |
self, | |
sents: List[Span] | |
): | |
encoded_input, special_tokens_masks, token_alignments = self.tokenizer.batch_encode(sents) | |
encoded_input = {k: v.to(self._device) for k, v in encoded_input.items()} | |
with torch.no_grad(): | |
model_output = self.model(**encoded_input) | |
embeddings = model_output[0].cpu() | |
spacy_embs_list = [] | |
for embs, mask, token_alignment \ | |
in zip(embeddings, special_tokens_masks, token_alignments): | |
mask = torch.tensor(mask) | |
embs = embs[mask == 0] # Filter embeddings at special token positions | |
spacy_embs = [] | |
for hf_idxs in token_alignment: | |
if hf_idxs is None: | |
pooled_embs = torch.zeros_like(embs[0]) | |
else: | |
pooled_embs = embs[hf_idxs].mean(dim=0) # Pool embeddings that map to the same spacy token | |
spacy_embs.append(pooled_embs.numpy()) | |
spacy_embs = np.stack(spacy_embs) | |
spacy_embs = spacy_embs / np.linalg.norm(spacy_embs, axis=-1, keepdims=True) # Normalize | |
spacy_embs_list.append(spacy_embs) | |
for embs, sent in zip(spacy_embs_list, sents): | |
assert len(embs) == len(sent) | |
return spacy_embs_list | |
class StaticEmbedding(EmbeddingModel): | |
def embed( | |
self, | |
sents: List[Span] | |
): | |
return [ | |
np.stack([t.vector / (t.vector_norm or 1) for t in sent]) | |
for sent in sents | |
] | |
class EmbeddingAligner(): | |
def __init__( | |
self, | |
embedding: EmbeddingModel, | |
threshold: float, | |
top_k: int, | |
baseline_val=0 | |
): | |
self.threshold = threshold | |
self.top_k = top_k | |
self.embedding = embedding | |
self.baseline_val = baseline_val | |
def align( | |
self, | |
source: Doc, | |
targets: Sequence[Doc] | |
) -> List[Dict]: | |
"""Compute alignment from summary tokens to doc tokens with greatest semantic similarity | |
Args: | |
source: Source spaCy document | |
targets: Target spaCy documents | |
Returns: List of alignments, one for each target document | |
""" | |
if len(source) == 0: | |
return [{} for _ in targets] | |
all_sents = list(source.sents) + list(itertools.chain.from_iterable(target.sents for target in targets)) | |
chunk_sizes = [_iter_len(source.sents)] + \ | |
[_iter_len(target.sents) for target in targets] | |
all_sents_token_embeddings = self.embedding.embed(all_sents) | |
chunked_sents_token_embeddings = _split(all_sents_token_embeddings, chunk_sizes) | |
source_sent_token_embeddings = chunked_sents_token_embeddings[0] | |
source_token_embeddings = np.concatenate(source_sent_token_embeddings) | |
for token_idx, token in enumerate(source): | |
if token.is_stop or token.is_punct: | |
source_token_embeddings[token_idx] = 0 | |
alignments = [] | |
for i, target in enumerate(targets): | |
target_sent_token_embeddings = chunked_sents_token_embeddings[i + 1] | |
target_token_embeddings = np.concatenate(target_sent_token_embeddings) | |
for token_idx, token in enumerate(target): | |
if token.is_stop or token.is_punct: | |
target_token_embeddings[token_idx] = 0 | |
alignment = defaultdict(list) | |
for score, target_idx, source_idx in self._emb_sim_sparse( | |
target_token_embeddings, | |
source_token_embeddings, | |
): | |
alignment[target_idx].append((source_idx, score)) | |
# TODO used argpartition to get nlargest | |
for j in list(alignment): | |
alignment[j] = heapq.nlargest(self.top_k, alignment[j], itemgetter(1)) | |
alignments.append(alignment) | |
return alignments | |
def _emb_sim_sparse(self, embs_1, embs_2): | |
sim = embs_1 @ embs_2.T | |
sim = (sim - self.baseline_val) / (1 - self.baseline_val) | |
keep = sim > self.threshold | |
keep_idxs_1, keep_idxs_2 = np.where(keep) | |
keep_scores = sim[keep] | |
return list(zip(keep_scores, keep_idxs_1, keep_idxs_2)) | |
class BertscoreAligner(EmbeddingAligner): | |
def __init__( | |
self, | |
threshold, | |
top_k | |
): | |
scorer = BERTScorer(lang="en", rescale_with_baseline=True) | |
model = scorer._model | |
embedding = ContextualEmbedding(model, "roberta-large", 510) | |
baseline_val = scorer.baseline_vals[2].item() | |
super(BertscoreAligner, self).__init__( | |
embedding, threshold, top_k, baseline_val | |
) | |
class StaticEmbeddingAligner(EmbeddingAligner): | |
def __init__( | |
self, | |
threshold, | |
top_k | |
): | |
embedding = StaticEmbedding() | |
super(StaticEmbeddingAligner, self).__init__( | |
embedding, threshold, top_k | |
) | |
class NGramAligner(): | |
def __init__(self): | |
self.stemmer = PorterStemmer() | |
def align( | |
self, | |
source: Doc, | |
targets: List[Doc], | |
) -> List[Dict]: | |
alignments = [] | |
source_ngram_spans = self._get_ngram_spans(source) | |
for target in targets: | |
target_ngram_spans = self._get_ngram_spans(target) | |
alignments.append( | |
self._align_ngrams(target_ngram_spans, source_ngram_spans) | |
) | |
return alignments | |
def _get_ngram_spans( | |
self, | |
doc: Doc, | |
): | |
ngrams = [] | |
for sent in doc.sents: | |
for n in range(1, len(list(sent))): | |
tokens = [t for t in sent if not (t.is_stop or t.is_punct)] | |
ngrams.extend(_ngrams(tokens, n)) | |
def ngram_key(ngram): | |
return tuple(self.stemmer.stem(token.text).lower() for token in ngram) | |
key_to_ngrams = itertoolz.groupby(ngram_key, ngrams) | |
key_to_spans = {} | |
for k, grouped_ngrams in key_to_ngrams.items(): | |
key_to_spans[k] = [ | |
(ngram[0].i, ngram[-1].i + 1) | |
for ngram in grouped_ngrams | |
] | |
return key_to_spans | |
def _align_ngrams( | |
self, | |
ngram_spans_1: Dict[Tuple[str], List[Tuple[int, int]]], | |
ngram_spans_2: Dict[Tuple[str], List[Tuple[int, int]]] | |
) -> Dict[Tuple[int, int], List[Tuple[int, int]]]: | |
"""Align ngram spans between two documents | |
Args: | |
ngram_spans_1: Map from (normalized_token1, normalized_token2, ...) n-gram tuple to a list of token spans | |
of format (start_pos, end_pos) | |
ngram_spans_2: Same format as above, but for second text | |
Returns: map from each (start, end) span in text 1 to list of aligned (start, end) spans in text 2 | |
""" | |
if not ngram_spans_1 or not ngram_spans_2: | |
return {} | |
max_span_end_1 = max(span[1] for span in itertools.chain.from_iterable(ngram_spans_1.values())) | |
token_is_available_1 = [True] * max_span_end_1 # | |
matched_keys = list(set(ngram_spans_1.keys()) & set(ngram_spans_2.keys())) # Matched normalized ngrams betwee | |
matched_keys.sort(key=len, reverse=True) # Process n-grams from longest to shortest | |
alignment = defaultdict(list) # Map from each matched span in text 1 to list of aligned spans in text 2 | |
for key in matched_keys: | |
spans_1 = ngram_spans_1[key] | |
spans_2 = ngram_spans_2[key] | |
available_spans_1 = [span for span in spans_1 if all(token_is_available_1[slice(*span)])] | |
matched_spans_1 = [] | |
if available_spans_1 and spans_2: | |
# if ngram can be matched to available spans in both sequences | |
for span in available_spans_1: | |
# It's possible that these newly matched spans may be overlapping with one another, so | |
# check that token positions still available (only one span allowed ber token in text 1): | |
if all(token_is_available_1[slice(*span)]): | |
matched_spans_1.append(span) | |
token_is_available_1[slice(*span)] = [False] * (span[1] - span[0]) | |
for span1 in matched_spans_1: | |
alignment[span1] = spans_2 | |
return alignment | |
class SpacyHuggingfaceTokenizer: | |
def __init__( | |
self, | |
model_name, | |
max_length | |
): | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
self.max_length = max_length | |
def batch_encode( | |
self, | |
sents: List[Span] | |
): | |
token_alignments = [] | |
token_ids_list = [] | |
# Tokenize each sentence and special tokens. | |
for sent in sents: | |
hf_tokens, token_alignment = self.tokenize(sent) | |
token_alignments.append(token_alignment) | |
token_ids = self.tokenizer.convert_tokens_to_ids(hf_tokens) | |
encoding = self.tokenizer.prepare_for_model( | |
token_ids, | |
add_special_tokens=True, | |
padding=False, | |
) | |
token_ids_list.append(encoding['input_ids']) | |
# Add padding | |
max_length = max(map(len, token_ids_list)) | |
attention_mask = [] | |
input_ids = [] | |
special_tokens_masks = [] | |
for token_ids in token_ids_list: | |
encoding = self.tokenizer.prepare_for_model( | |
token_ids, | |
padding=PaddingStrategy.MAX_LENGTH, | |
max_length=max_length, | |
add_special_tokens=False | |
) | |
input_ids.append(encoding['input_ids']) | |
attention_mask.append(encoding['attention_mask']) | |
special_tokens_masks.append( | |
self.tokenizer.get_special_tokens_mask( | |
encoding['input_ids'], | |
already_has_special_tokens=True | |
) | |
) | |
encoded = { | |
'input_ids': torch.tensor(input_ids), | |
'attention_mask': torch.tensor(attention_mask) | |
} | |
return encoded, special_tokens_masks, token_alignments | |
def tokenize( | |
self, | |
sent | |
): | |
"""Convert spacy sentence to huggingface tokens and compute the alignment""" | |
hf_tokens = [] | |
token_alignment = [] | |
for i, token in enumerate(sent): | |
# "Tokenize" each word individually, so as to track the alignment between spaCy/HF tokens | |
# Prefix all tokens with a space except the first one in the sentence | |
if i == 0: | |
token_text = token.text | |
else: | |
token_text = ' ' + token.text | |
start_hf_idx = len(hf_tokens) | |
word_tokens = self.tokenizer.tokenize(token_text) | |
end_hf_idx = len(hf_tokens) + len(word_tokens) | |
if end_hf_idx < self.max_length: | |
hf_tokens.extend(word_tokens) | |
hf_idxs = list(range(start_hf_idx, end_hf_idx)) | |
else: | |
hf_idxs = None | |
token_alignment.append(hf_idxs) | |
return hf_tokens, token_alignment | |
def _split(data, sizes): | |
it = iter(data) | |
return [[next(it) for _ in range(size)] for size in sizes] | |
def _iter_len(it): | |
return sum(1 for _ in it) | |
# TODO set up batching | |
# To get top K axis and value per row: https://stackoverflow.com/questions/42832711/using-np-argpartition-to-index-values-in-a-multidimensional-array | |
def _ngrams(tokens, n): | |
for i in range(len(tokens) - n + 1): | |
yield tokens[i:i + n] | |