Spaces:
Runtime error
Runtime error
import logging | |
import os | |
from argparse import ArgumentParser | |
from ast import literal_eval | |
from types import SimpleNamespace | |
from typing import List | |
from robustnessgym import Dataset, Spacy, CachedOperation | |
from robustnessgym.core.constants import CACHEDOPS | |
from robustnessgym.core.tools import strings_as_json | |
from robustnessgym.logging.utils import set_logging_level | |
from spacy import load | |
from spacy.attrs import DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER, TAG, SENT_END, \ | |
SENT_START, ORTH, POS, ENT_IOB | |
from spacy.tokens import Doc | |
from align import BertscoreAligner, NGramAligner, StaticEmbeddingAligner | |
from utils import preprocess_text | |
set_logging_level('critical') | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.CRITICAL) | |
def _spacy_encode(self, x): | |
arr = x.to_array( | |
[DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER, TAG, SENT_END, SENT_START, | |
ORTH, POS, ENT_IOB]) | |
return { | |
'arr': arr.flatten(), | |
'shape': list(arr.shape), | |
'words': [t.text for t in x] | |
} | |
def _spacy_decode(self, x): | |
doc = Doc(self.nlp.vocab, words=x['words']) | |
return doc.from_array( | |
[DEP, IS_ALPHA, IS_PUNCT, IS_STOP, LEMMA, LOWER, | |
TAG, SENT_END, SENT_START, ORTH, POS, ENT_IOB], | |
x['arr'].reshape(x['shape']) | |
) | |
Spacy.encode = _spacy_encode | |
Spacy.decode = _spacy_decode | |
class AlignerCap(CachedOperation): | |
def __init__( | |
self, | |
aligner, | |
spacy, | |
**kwargs, | |
): | |
super(AlignerCap, self).__init__(**kwargs) | |
self.spacy = spacy | |
self.aligner = aligner | |
def encode(cls, x): | |
# Convert to built-in types from np.int / np.float | |
return super(AlignerCap, cls).encode([ | |
{str(k): [(int(t[0]), float(t[1])) for t in v] for k, v in d.items()} | |
for d in x | |
]) | |
def decode(cls, x): | |
x = super(AlignerCap, cls).decode(x) | |
x = [{literal_eval(k): v for k, v in d.items()} for d in x] | |
return x | |
def apply(self, batch, columns, *args, **kwargs): | |
# Run the aligner on the first example of the batch | |
return [ | |
self.aligner.align( | |
self.spacy.retrieve(batch, columns[0])[0], | |
[self.spacy.retrieve(batch, col)[0] for col in columns[1:]] | |
if len(columns) > 2 else | |
[self.spacy.retrieve(batch, columns[1])[0]], | |
) | |
] | |
class BertscoreAlignerCap(AlignerCap): | |
def __init__( | |
self, | |
threshold: float, | |
top_k: int, | |
spacy, | |
): | |
super(BertscoreAlignerCap, self).__init__( | |
aligner=BertscoreAligner(threshold=threshold, top_k=top_k), | |
spacy=spacy, | |
threshold=threshold, | |
top_k=top_k, | |
) | |
class NGramAlignerCap(AlignerCap): | |
def __init__( | |
self, | |
spacy, | |
): | |
super(NGramAlignerCap, self).__init__( | |
aligner=NGramAligner(), | |
spacy=spacy | |
) | |
class StaticEmbeddingAlignerCap(AlignerCap): | |
def __init__( | |
self, | |
threshold: float, | |
top_k: int, | |
spacy, | |
): | |
super(StaticEmbeddingAlignerCap, self).__init__( | |
aligner=StaticEmbeddingAligner(threshold=threshold, top_k=top_k), | |
spacy=spacy, | |
threshold=threshold, | |
top_k=top_k, | |
) | |
def _run_aligners( | |
dataset: Dataset, | |
aligners: List[CachedOperation], | |
doc_column: str, | |
reference_column: str, | |
summary_columns: List[str] = None, | |
): | |
if not summary_columns: | |
summary_columns = [] | |
to_columns = [] | |
if reference_column is not None: | |
to_columns.append(reference_column) | |
to_columns.extend(summary_columns) | |
for aligner in aligners: | |
# Run the aligner on (document, summary) pairs | |
dataset = aligner( | |
dataset, | |
[doc_column] + to_columns, | |
# Must use `batch_size = 1` | |
batch_size=1, | |
) | |
if reference_column is not None and len(summary_columns): | |
# Run the aligner on (reference, summary) pairs | |
dataset = aligner( | |
dataset, | |
[reference_column] + summary_columns, | |
# Must use `batch_size = 1` | |
batch_size=1, | |
) | |
if len(to_columns) > 1: | |
# Instead of having one column for (document, summary) comparisons, split | |
# off into (1 + |summary_columns|) total columns, one for each comparison | |
# Retrieve the (document, summary) column | |
doc_summary_column = aligner.retrieve( | |
dataset[:], | |
[doc_column] + to_columns, | |
)[tuple([doc_column] + to_columns)] | |
for i, col in enumerate(to_columns): | |
# Add as a new column after encoding with the aligner's `encode` method | |
dataset.add_column( | |
column=str(aligner.identifier(columns=[doc_column, col])), | |
values=[aligner.encode([row[i]]) for row in doc_summary_column], | |
) | |
# Remove the (document, summary) column | |
dataset.remove_column( | |
str( | |
aligner.identifier( | |
columns=[doc_column] + to_columns | |
) | |
) | |
) | |
del dataset.interactions[CACHEDOPS].history[ | |
( | |
aligner.identifier, | |
strings_as_json( | |
strings=[doc_column] + to_columns | |
) | |
) | |
] | |
if reference_column is not None and len(summary_columns) > 1: | |
# Instead of having one column for (reference, summary) comparisons, split | |
# off into (|summary_columns|) total columns, one for each comparison | |
# Retrieve the (reference, summary) column | |
reference_summary_column = aligner.retrieve( | |
dataset[:], | |
[reference_column] + summary_columns, | |
)[tuple([reference_column] + summary_columns)] | |
for i, col in enumerate(summary_columns): | |
# Add as a new column | |
dataset.add_column( | |
column=str(aligner.identifier(columns=[reference_column, col])), | |
values=[ | |
aligner.encode([row[i]]) for row in reference_summary_column | |
] | |
) | |
# Remove the (reference, summary) column | |
dataset.remove_column( | |
str( | |
aligner.identifier( | |
columns=[reference_column] + summary_columns | |
) | |
) | |
) | |
del dataset.interactions[CACHEDOPS].history[ | |
( | |
aligner.identifier, | |
strings_as_json( | |
strings=[reference_column] + summary_columns | |
) | |
) | |
] | |
return dataset | |
def deanonymize_dataset( | |
rg_path: str, | |
standardized_dataset: Dataset, | |
processed_dataset_path: str = None, | |
n_samples: int = None, | |
): | |
"""Take an anonymized dataset and add back the original dataset columns.""" | |
assert processed_dataset_path is not None, \ | |
"Please specify a path to save the dataset." | |
# Load the dataset | |
dataset = Dataset.load_from_disk(rg_path) | |
if n_samples: | |
dataset.set_visible_rows(list(range(n_samples))) | |
standardized_dataset.set_visible_rows(list(range(n_samples))) | |
text_columns = [] | |
# Add columns from the standardized dataset | |
dataset.add_column('document', standardized_dataset['document']) | |
text_columns.append('document') | |
if 'summary:reference' in standardized_dataset.column_names: | |
dataset.add_column('summary:reference', standardized_dataset['summary:reference']) | |
text_columns.append('summary:reference') | |
# Preprocessing all the text columns | |
dataset = dataset.update( | |
lambda x: {f'preprocessed_{k}': preprocess_text(x[k]) for k in text_columns} | |
) | |
# Run the Spacy pipeline on all preprocessed text columns | |
try: | |
nlp = load('en_core_web_lg') | |
except OSError: | |
nlp = load('en_core_web_sm') | |
nlp.add_pipe('sentencizer', before="parser") | |
spacy = Spacy(nlp=nlp) | |
dataset = spacy( | |
dataset, | |
[f'preprocessed_{col}' for col in text_columns], | |
batch_size=100, | |
) | |
# Directly save to disk | |
dataset.save_to_disk(processed_dataset_path) | |
return dataset | |
def run_workflow( | |
jsonl_path: str = None, | |
dataset: Dataset = None, | |
doc_column: str = None, | |
reference_column: str = None, | |
summary_columns: List[str] = None, | |
bert_aligner_threshold: float = 0.5, | |
bert_aligner_top_k: int = 3, | |
embedding_aligner_threshold: float = 0.5, | |
embedding_aligner_top_k: int = 3, | |
processed_dataset_path: str = None, | |
n_samples: int = None, | |
anonymize: bool = False, | |
): | |
assert (jsonl_path is None) != (dataset is None), \ | |
"One of `jsonl_path` and `dataset` must be specified." | |
assert processed_dataset_path is not None, \ | |
"Please specify a path to save the dataset." | |
# Load the dataset | |
if jsonl_path is not None: | |
dataset = Dataset.from_jsonl(jsonl_path) | |
if doc_column is None: | |
# Assume `doc_column` is called "document" | |
doc_column = 'document' | |
assert doc_column in dataset.column_names, \ | |
f"`doc_column={doc_column}` is not a column in dataset." | |
print("Assuming `doc_column` is called 'document'.") | |
if reference_column is None: | |
# Assume `reference_column` is called "summary:reference" | |
reference_column = 'summary:reference' | |
print("Assuming `reference_column` is called 'summary:reference'.") | |
if reference_column not in dataset.column_names: | |
print("No reference summary loaded") | |
reference_column = None | |
if summary_columns is None or len(summary_columns) == 0: | |
# Assume `summary_columns` are prefixed by "summary:" | |
summary_columns = [] | |
for col in dataset.column_names: | |
if col.startswith("summary:") and col != "summary:reference": | |
summary_columns.append(col) | |
print(f"Reading summary columns from dataset. Found {summary_columns}.") | |
if len(summary_columns) == 0 and reference_column is None: | |
raise ValueError("At least one summary is required") | |
# Set visible rows to restrict to the first `n_samples` | |
if n_samples: | |
dataset.set_visible_rows(list(range(n_samples))) | |
# Combine the text columns into one list | |
text_columns = [doc_column] + ([reference_column] if reference_column else []) + summary_columns | |
# Preprocessing all the text columns | |
dataset = dataset.update( | |
lambda x: {f'preprocessed_{k}': preprocess_text(x[k]) for k in text_columns} | |
) | |
# Run the Spacy pipeline on all preprocessed text columns | |
nlp = load('en_core_web_lg') | |
nlp.add_pipe('sentencizer', before="parser") | |
spacy = Spacy(nlp=nlp) | |
dataset = spacy( | |
dataset, | |
[f'preprocessed_{col}' for col in text_columns], | |
batch_size=100, | |
) | |
# Run the 3 align pipelines | |
bert_aligner = BertscoreAlignerCap( | |
threshold=bert_aligner_threshold, | |
top_k=bert_aligner_top_k, | |
spacy=spacy, | |
) | |
embedding_aligner = StaticEmbeddingAlignerCap( | |
threshold=embedding_aligner_threshold, | |
top_k=embedding_aligner_top_k, | |
spacy=spacy, | |
) | |
ngram_aligner = NGramAlignerCap( | |
spacy=spacy, | |
) | |
dataset = _run_aligners( | |
dataset=dataset, | |
aligners=[bert_aligner, embedding_aligner, ngram_aligner], | |
doc_column=f'preprocessed_{doc_column}', | |
reference_column=f'preprocessed_{reference_column}' if reference_column else None, | |
summary_columns=[f'preprocessed_{col}' for col in summary_columns], | |
) | |
# Save the dataset | |
if anonymize: | |
# Remove certain columns to anonymize and save to disk | |
for col in [doc_column, reference_column]: | |
if col is not None: | |
dataset.remove_column(col) | |
dataset.remove_column(f'preprocessed_{col}') | |
dataset.remove_column( | |
str(spacy.identifier(columns=[f'preprocessed_{col}'])) | |
) | |
del dataset.interactions[CACHEDOPS].history[ | |
(spacy.identifier, f'preprocessed_{col}') | |
] | |
dataset.save_to_disk(f'{processed_dataset_path}.anonymized') | |
else: | |
# Directly save to disk | |
dataset.save_to_disk(processed_dataset_path) | |
return dataset | |
def parse_prediction_jsonl_name(prediction_jsonl: str): | |
"""Parse the name of the prediction_jsonl to extract useful information.""" | |
# Analyze the name of the prediction_jsonl | |
filename = prediction_jsonl.split("/")[-1] | |
# Check that the filename ends with `.results.anonymized` | |
if filename.endswith(".results.anonymized"): | |
# Fmt: <model>-<training dataset>.<eval dataset>.<eval split>.results.anonymized | |
# Split using a period | |
model_train_dataset, eval_dataset, eval_split = filename.split(".")[:-2] | |
model, train_dataset = model_train_dataset.split("-") | |
return SimpleNamespace( | |
model_train_dataset=model_train_dataset, | |
model=model, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
eval_split=eval_split, | |
) | |
raise NotImplementedError( | |
"Prediction files must be named " | |
"<model>-<training dataset>.<eval dataset>.<eval split>.results.anonymized. " | |
f"Please rename the prediction file {filename} and run again." | |
) | |
def join_predictions( | |
dataset_jsonl: str = None, | |
prediction_jsonls: str = None, | |
save_jsonl_path: str = None, | |
): | |
"""Join predictions with a dataset.""" | |
assert prediction_jsonls is not None, "Must have prediction jsonl files." | |
print( | |
"> Warning: please inspect the prediction .jsonl file to make sure that " | |
"predictions are aligned with the examples in the dataset. " | |
"Use `get_dataset` to inspect the dataset." | |
) | |
# Load the dataset | |
dataset = get_dataset(dataset_jsonl=dataset_jsonl) | |
# Parse names of all prediction files to get metadata | |
metadata = [ | |
parse_prediction_jsonl_name(prediction_jsonl) | |
for prediction_jsonl in prediction_jsonls | |
] | |
# Load the predictions | |
predictions = [ | |
Dataset.from_jsonl(json_path=prediction_jsonl) | |
for prediction_jsonl in prediction_jsonls | |
] | |
# Predictions for a model | |
for i, prediction_data in enumerate(predictions): | |
# Get metadata for i_th prediction file | |
metadata_i = metadata[i] | |
# Construct a prefix for columns added to the dataset for this prediction file | |
prefix = metadata_i.model_train_dataset | |
# Add the predictions column to the dataset | |
for col in prediction_data.column_names: | |
# Don't add the indexing information since the dataset has it already | |
if col not in {'index', 'ix', 'id'}: | |
# `add_column` will automatically ensure that column lengths match | |
if col == 'decoded': # rename decoded to summary | |
dataset.add_column(f'summary:{prefix}', prediction_data[col]) | |
else: | |
dataset.add_column(f'{prefix}:{col}', prediction_data[col]) | |
# Save the dataset back to disk | |
if save_jsonl_path: | |
dataset.to_jsonl(save_jsonl_path) | |
else: | |
print("Dataset with predictions was not saved since `save_jsonl_path` " | |
"was not specified.") | |
return dataset | |
def standardize_dataset( | |
dataset_name: str = None, | |
dataset_version: str = None, | |
dataset_split: str = 'test', | |
dataset_jsonl: str = None, | |
doc_column: str = None, | |
reference_column: str = None, | |
save_jsonl_path: str = None, | |
no_save: bool = False, | |
): | |
"""Load a dataset from Huggingface and dump it to disk.""" | |
# Load the dataset from Huggingface | |
dataset = get_dataset( | |
dataset_name=dataset_name, | |
dataset_version=dataset_version, | |
dataset_split=dataset_split, | |
dataset_jsonl=dataset_jsonl, | |
) | |
if doc_column is None: | |
if reference_column is not None: | |
raise ValueError("You must specify `doc_column` if you specify `reference_column`") | |
try: | |
doc_column, reference_column = { | |
'cnn_dailymail': ('article', 'highlights'), | |
'xsum': ('document', 'summary') | |
}[dataset_name] | |
except: | |
raise NotImplementedError( | |
"Please specify `doc_column`." | |
) | |
# Rename the columns | |
if doc_column != 'document': | |
dataset.add_column('document', dataset[doc_column]) | |
dataset.remove_column(doc_column) | |
dataset.add_column('summary:reference', dataset[reference_column]) | |
dataset.remove_column(reference_column) | |
# Save the dataset back to disk | |
if save_jsonl_path: | |
dataset.to_jsonl(save_jsonl_path) | |
elif (save_jsonl_path is None) and not no_save: | |
# Auto-create a path to save the standardized dataset | |
os.makedirs('preprocessing', exist_ok=True) | |
if not dataset_jsonl: | |
dataset.to_jsonl( | |
f'preprocessing/' | |
f'standardized_{dataset_name}_{dataset_version}_{dataset_split}.jsonl' | |
) | |
else: | |
dataset.to_jsonl( | |
f'preprocessing/' | |
f'standardized_{dataset_jsonl.split("/")[-1]}' | |
) | |
return dataset | |
def get_dataset( | |
dataset_name: str = None, | |
dataset_version: str = None, | |
dataset_split: str = 'test', | |
dataset_jsonl: str = None, | |
): | |
"""Load a dataset.""" | |
assert (dataset_name is not None) != (dataset_jsonl is not None), \ | |
"Specify one of `dataset_name` or `dataset_jsonl`." | |
# Load the dataset | |
if dataset_name is not None: | |
return get_hf_dataset(dataset_name, dataset_version, dataset_split) | |
return Dataset.from_jsonl(json_path=dataset_jsonl) | |
def get_hf_dataset(name: str, version: str = None, split: str = 'test'): | |
"""Get dataset from Huggingface.""" | |
if version: | |
return Dataset.load_dataset(name, version, split=split) | |
return Dataset.load_dataset(name, split=split) | |
if __name__ == '__main__': | |
parser = ArgumentParser() | |
parser.add_argument('--dataset', type=str, choices=['cnn_dailymail', 'xsum'], | |
help="Huggingface dataset name.") | |
parser.add_argument('--version', type=str, | |
help="Huggingface dataset version.") | |
parser.add_argument('--split', type=str, default='test', | |
help="Huggingface dataset split.") | |
parser.add_argument('--dataset_jsonl', type=str, | |
help="Path to a jsonl file for the dataset.") | |
parser.add_argument('--dataset_rg', type=str, | |
help="Path to a dataset stored in the Robustness Gym format. " | |
"All processed datasets are stored in this format.") | |
parser.add_argument('--prediction_jsonls', nargs='+', default=[], | |
help="Path to one or more jsonl files for the predictions.") | |
parser.add_argument('--save_jsonl_path', type=str, | |
help="Path to save the processed jsonl dataset.") | |
parser.add_argument('--doc_column', type=str, | |
help="Name of the document column in the dataset.") | |
parser.add_argument('--reference_column', type=str, | |
help="Name of the reference summary column in the dataset.") | |
parser.add_argument('--summary_columns', nargs='+', default=[], | |
help="Name of other summary columns in/added to the dataset.") | |
parser.add_argument('--bert_aligner_threshold', type=float, default=0.1, | |
help="Minimum threshold for BERT alignment.") | |
parser.add_argument('--bert_aligner_top_k', type=int, default=10, | |
help="Top-k for BERT alignment.") | |
parser.add_argument('--embedding_aligner_threshold', type=float, default=0.1, | |
help="Minimum threshold for embedding alignment.") | |
parser.add_argument('--embedding_aligner_top_k', type=int, default=10, | |
help="Top-k for embedding alignment.") | |
parser.add_argument('--processed_dataset_path', type=str, | |
help="Path to store the final processed dataset.") | |
parser.add_argument('--n_samples', type=int, | |
help="Number of dataset samples to process.") | |
parser.add_argument('--workflow', action='store_true', default=False, | |
help="Whether to run the preprocessing workflow.") | |
parser.add_argument('--standardize', action='store_true', default=False, | |
help="Whether to standardize the dataset and save to jsonl.") | |
parser.add_argument('--join_predictions', action='store_true', default=False, | |
help="Whether to add predictions to the dataset and save to " | |
"jsonl.") | |
parser.add_argument('--try_it', action='store_true', default=False, | |
help="`Try it` mode is faster and runs processing on 10 " | |
"examples.") | |
parser.add_argument('--deanonymize', action='store_true', default=False, | |
help="Deanonymize the dataset provided by summvis.") | |
parser.add_argument('--anonymize', action='store_true', default=False, | |
help="Anonymize by removing document and reference summary " | |
"columns of the original dataset.") | |
args = parser.parse_args() | |
if args.standardize: | |
# Dump a dataset to jsonl on disk after standardizing it | |
standardize_dataset( | |
dataset_name=args.dataset, | |
dataset_version=args.version, | |
dataset_split=args.split, | |
dataset_jsonl=args.dataset_jsonl, | |
doc_column=args.doc_column, | |
reference_column=args.reference_column, | |
save_jsonl_path=args.save_jsonl_path, | |
) | |
if args.join_predictions: | |
# Join the predictions with the dataset | |
dataset = join_predictions( | |
dataset_jsonl=args.dataset_jsonl, | |
prediction_jsonls=args.prediction_jsonls, | |
save_jsonl_path=args.save_jsonl_path, | |
) | |
if args.workflow: | |
# Run the processing workflow | |
dataset = None | |
# Check if `args.dataset_rg` was passed in | |
if args.dataset_rg: | |
# Load the dataset directly | |
dataset = Dataset.load_from_disk(args.dataset_rg) | |
run_workflow( | |
jsonl_path=args.dataset_jsonl, | |
dataset=dataset, | |
doc_column=args.doc_column, | |
reference_column=args.reference_column, | |
summary_columns=args.summary_columns, | |
bert_aligner_threshold=args.bert_aligner_threshold, | |
bert_aligner_top_k=args.bert_aligner_top_k, | |
embedding_aligner_threshold=args.embedding_aligner_threshold, | |
embedding_aligner_top_k=args.embedding_aligner_top_k, | |
processed_dataset_path=args.processed_dataset_path, | |
n_samples=args.n_samples if not args.try_it else 10, | |
anonymize=args.anonymize, | |
) | |
if args.deanonymize: | |
# Deanonymize an anonymized dataset | |
# Check if `args.dataset_rg` was passed in | |
assert args.dataset_rg is not None, \ | |
"Must specify `dataset_rg` path to be deanonymized." | |
assert args.dataset_rg.endswith('anonymized'), \ | |
"`dataset_rg` must end in 'anonymized'." | |
assert (args.dataset is None) != (args.dataset_jsonl is None), \ | |
"`dataset_rg` points to an anonymized dataset that will be " \ | |
"deanonymized. Please pass in relevant arguments: either " \ | |
"`dataset`, `version` and `split` OR `dataset_jsonl`." | |
# Load the standardized dataset | |
standardized_dataset = standardize_dataset( | |
dataset_name=args.dataset, | |
dataset_version=args.version, | |
dataset_split=args.split, | |
dataset_jsonl=args.dataset_jsonl, | |
doc_column=args.doc_column, | |
reference_column=args.reference_column, | |
no_save=True, | |
) | |
# Use it to deanonymize | |
dataset = deanonymize_dataset( | |
rg_path=args.dataset_rg, | |
standardized_dataset=standardized_dataset, | |
processed_dataset_path=args.processed_dataset_path, | |
n_samples=args.n_samples if not args.try_it else 10, | |
) | |