Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import evaluate | |
from evaluate import logging | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This metric quantifies the faithfulness of a summary wrt to a source document, | |
as given by the probability that the document is entailed by the summary. | |
This metric uses pretrained models apt for the Newswire domain (see ScEntFaithfulness | |
for a version in scientific domain). | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each prediction represents a summary and | |
should be a string with tokens separated by spaces | |
references: list of references for each prediction. Each | |
reference represents the input document and should be a string with tokens separated by spaces. | |
Returns: | |
ent-faith: description of the first score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'ent-faith': 1.0} | |
""" | |
# TODO: Define external resources urls if needed | |
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class NwEntFaithfulness(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="https://huggingface.co/spaces/ronaldahmed/nwentfaithfulness", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
# original: references | |
def _compute(self, predictions, documents, | |
batch_size: int = 16, device=None): | |
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface" | |
if device is not None: | |
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." | |
if device == "gpu": | |
device = "cuda" | |
else: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli", | |
cache_dir=MODEL_CACHE_DIR) | |
model = model.to(device) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli", | |
cache_dir=MODEL_CACHE_DIR) | |
max_tokenized_len = model.config.max_length | 256 | |
encoded_texts = [] | |
attn_masks = [] | |
tok_types = [] | |
for pred,doc in zip(predictions,documents): | |
enc = tokenizer.encode_plus(pred, doc, | |
max_length=max_tokenized_len, | |
padding=True, | |
truncation=True, | |
return_token_type_ids=True, | |
return_attention_mask=True) | |
encoded_texts.append(enc["input_ids"]) | |
attn_masks.append(enc["attention_mask"]) | |
tok_types.append(enc["token_type_ids"]) | |
enf_fs = [] | |
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)): | |
end_index = min(start_index + batch_size, len(encoded_texts)) | |
encoded_batch = torch.Long(encoded_texts[start_index:end_index]).to(device) | |
attn_mask = torch.Long(attn_masks[start_index:end_index]).to(device) | |
token_type = torch.Long(tok_types[start_index:end_index]).to(device) | |
with torch.no_grad(): | |
outputs = model(encoded_batch, | |
attention_mask=attn_mask, | |
token_type_ids=token_type, | |
labels=None)[0] | |
probs = torch.softmax(outputs,dim=1)[:,0].tolist() | |
enf_fs += probs | |
return {"ent-faith": enf_fs, "mean_ent-faith": np.mean(enf_fs)} |