nwentfaithfulness / nwentfaithfulness.py
ronald cardenas acosta
batching
141eb78
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import numpy as np
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import evaluate
from evaluate import logging
# TODO: Add BibTeX citation
_CITATION = """\
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This metric quantifies the faithfulness of a summary wrt to a source document,
as given by the probability that the document is entailed by the summary.
This metric uses pretrained models apt for the Newswire domain (see ScEntFaithfulness
for a version in scientific domain).
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each prediction represents a summary and
should be a string with tokens separated by spaces
references: list of references for each prediction. Each
reference represents the input document and should be a string with tokens separated by spaces.
Returns:
ent-faith: description of the first score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'ent-faith': 1.0}
"""
# TODO: Define external resources urls if needed
# BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NwEntFaithfulness(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('int64'),
'references': datasets.Value('int64'),
}),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/ronaldahmed/nwentfaithfulness",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
# original: references
def _compute(self, predictions, documents,
batch_size: int = 16, device=None):
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface"
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSequenceClassification.from_pretrained(
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
cache_dir=MODEL_CACHE_DIR)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(
"ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli",
cache_dir=MODEL_CACHE_DIR)
max_tokenized_len = model.config.max_length | 256
encoded_texts = []
attn_masks = []
tok_types = []
for pred,doc in zip(predictions,documents):
enc = tokenizer.encode_plus(pred, doc,
max_length=max_tokenized_len,
padding=True,
truncation=True,
return_token_type_ids=True,
return_attention_mask=True)
encoded_texts.append(enc["input_ids"])
attn_masks.append(enc["attention_mask"])
tok_types.append(enc["token_type_ids"])
enf_fs = []
for start_index in logging.tqdm(range(0, len(encoded_texts), batch_size)):
end_index = min(start_index + batch_size, len(encoded_texts))
encoded_batch = torch.Long(encoded_texts[start_index:end_index]).to(device)
attn_mask = torch.Long(attn_masks[start_index:end_index]).to(device)
token_type = torch.Long(tok_types[start_index:end_index]).to(device)
with torch.no_grad():
outputs = model(encoded_batch,
attention_mask=attn_mask,
token_type_ids=token_type,
labels=None)[0]
probs = torch.softmax(outputs,dim=1)[:,0].tolist()
enf_fs += probs
return {"ent-faith": enf_fs, "mean_ent-faith": np.mean(enf_fs)}