File size: 6,705 Bytes
6bcacf9
 
415da73
 
6bcacf9
 
415da73
6bcacf9
 
 
415da73
8c39361
6bcacf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c39361
 
 
 
 
 
6bcacf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c39361
 
6bcacf9
767ebde
6bcacf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c39361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
 
 
 
8c39361
415da73
8c39361
 
 
 
415da73
 
 
 
 
 
 
 
 
 
 
 
6bcacf9
 
 
 
 
 
8c39361
6bcacf9
 
415da73
 
 
 
 
 
8c39361
 
 
 
 
 
 
 
 
415da73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c39361
415da73
 
 
 
 
 
 
 
 
 
8c39361
415da73
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from app_settings import AppSettings
from utils import show_system_info
from PIL import Image
from backend.models.lcmdiffusion_setting import DiffusionTask
import constants
from argparse import ArgumentParser

from constants import APP_VERSION, LCM_DEFAULT_MODEL_OPENVINO
from models.interface_types import InterfaceType
from constants import DEVICE
from state import get_settings, get_context

parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument(
    "-s",
    "--share",
    action="store_true",
    help="Create sharable link(Web UI)",
    required=False,
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
    "-g",
    "--gui",
    action="store_true",
    help="Start desktop GUI",
)
group.add_argument(
    "-w",
    "--webui",
    action="store_true",
    help="Start Web UI",
)
group.add_argument(
    "-r",
    "--realtime",
    action="store_true",
    help="Start realtime inference UI(experimental)",
)
group.add_argument(
    "-v",
    "--version",
    action="store_true",
    help="Version",
)
parser.add_argument(
    "--lcm_model_id",
    type=str,
    help="Model ID or path,Default SimianLuo/LCM_Dreamshaper_v7",
    default="SimianLuo/LCM_Dreamshaper_v7",
)
parser.add_argument(
    "--prompt",
    type=str,
    help="Describe the image you want to generate",
)
parser.add_argument(
    "--image_height",
    type=int,
    help="Height of the image",
    default=512,
)
parser.add_argument(
    "--image_width",
    type=int,
    help="Width of the image",
    default=512,
)
parser.add_argument(
    "--inference_steps",
    type=int,
    help="Number of steps,default : 4",
    default=4,
)
parser.add_argument(
    "--guidance_scale",
    type=int,
    help="Guidance scale,default : 1.0",
    default=1.0,
)

parser.add_argument(
    "--number_of_images",
    type=int,
    help="Number of images to generate ,default : 1",
    default=1,
)
parser.add_argument(
    "--seed",
    type=int,
    help="Seed,default : -1 (disabled) ",
    default=-1,
)
parser.add_argument(
    "--use_openvino",
    action="store_true",
    help="Use OpenVINO model",
)

parser.add_argument(
    "--use_offline_model",
    action="store_true",
    help="Use offline model",
)
parser.add_argument(
    "--use_safety_checker",
    action="store_false",
    help="Use safety checker",
)
parser.add_argument(
    "--use_lcm_lora",
    action="store_true",
    help="Use LCM-LoRA",
)
parser.add_argument(
    "--base_model_id",
    type=str,
    help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
    default="Lykon/dreamshaper-8",
)
parser.add_argument(
    "--lcm_lora_id",
    type=str,
    help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
    default="latent-consistency/lcm-lora-sdv1-5",
)
parser.add_argument(
    "-i",
    "--interactive",
    action="store_true",
    help="Interactive CLI mode",
)
parser.add_argument(
    "-t",
    "--use_tiny_auto_encoder",
    action="store_true",
    help="Use tiny auto encoder for SD (TAESD)",
)
parser.add_argument(
    "-f",
    "--file",
    type=str,
    help="Input image for img2img mode",
    default="",
)
parser.add_argument(
    "--img2img",
    action="store_true",
    help="img2img mode; requires input file via -f argument",
)
args = parser.parse_args()

if args.version:
    print(APP_VERSION)
    exit()

# parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
if args.webui:
    app_settings = get_settings()
else:
    app_settings = get_settings()

print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
    f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
    f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
    f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
if args.gui:
    from frontend.gui.ui import start_gui

    print("Starting desktop GUI mode(Qt)")
    start_gui(
        [],
        app_settings,
    )
elif args.webui:
    from frontend.webui.ui import start_webui

    print("Starting web UI mode")
    start_webui(
        args.share,
    )
elif args.realtime:
    from frontend.webui.realtime_ui import start_realtime_text_to_image

    print("Starting realtime text to image(EXPERIMENTAL)")
    start_realtime_text_to_image(args.share)
else:
    context = get_context(InterfaceType.CLI)
    config = app_settings.settings

    if args.use_openvino:
        config.lcm_diffusion_setting.lcm_model_id = LCM_DEFAULT_MODEL_OPENVINO
    else:
        config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id

    config.lcm_diffusion_setting.prompt = args.prompt
    config.lcm_diffusion_setting.image_height = args.image_height
    config.lcm_diffusion_setting.image_width = args.image_width
    config.lcm_diffusion_setting.guidance_scale = args.guidance_scale
    config.lcm_diffusion_setting.number_of_images = args.number_of_images
    config.lcm_diffusion_setting.inference_steps = args.inference_steps
    config.lcm_diffusion_setting.seed = args.seed
    config.lcm_diffusion_setting.use_openvino = args.use_openvino
    config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder
    config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora
    config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id
    config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id
    config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value

    if args.img2img and args.file != "" :
        config.lcm_diffusion_setting.init_image = Image.open(args.file)
        config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value
    elif args.img2img and args.file == "":
        print("You need to specify a file in img2img mode")
        exit()

    if args.seed > -1:
        config.lcm_diffusion_setting.use_seed = True
    else:
        config.lcm_diffusion_setting.use_seed = False
    config.lcm_diffusion_setting.use_offline_model = args.use_offline_model
    config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker

    if args.interactive:
        while True:
            user_input = input(">>")
            if user_input == "exit":
                break
            config.lcm_diffusion_setting.prompt = user_input
            context.generate_text_to_image(
                settings=config,
                device=DEVICE,
            )

    else:
        context.generate_text_to_image(
            settings=config,
            device=DEVICE,
        )