File size: 12,733 Bytes
e09f17f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 16 14:27:44 2023
@author: mheinzinger
"""
import argparse
import time
from pathlib import Path
from urllib import request
import shutil
import numpy as np
import torch
from torch import nn
from transformers import T5EncoderModel, T5Tokenizer
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("Using device: {}".format(device))
# Convolutional neural network (two convolutional layers)
class CNN(nn.Module):
def __init__( self ):
super(CNN, self).__init__()
self.classifier = nn.Sequential(
nn.Conv2d(1024, 32, kernel_size=(7, 1), padding=(3, 0)), # 7x32
nn.ReLU(),
nn.Dropout(0.0),
nn.Conv2d(32, 20, kernel_size=(7, 1), padding=(3, 0))
)
def forward(self, x):
"""
L = protein length
B = batch-size
F = number of features (1024 for embeddings)
N = number of classes (20 for 3Di)
"""
x = x.permute(0, 2, 1).unsqueeze(dim=-1) # IN: X = (B x L x F); OUT: (B x F x L, 1)
Yhat = self.classifier(x) # OUT: Yhat_consurf = (B x N x L x 1)
Yhat = Yhat.squeeze(dim=-1) # IN: (B x N x L x 1); OUT: ( B x L x N )
return Yhat
def one_hot_3di_sequence(sequence, vocab):
foldseek_enc = torch.zeros(
len(sequence), len(vocab), dtype=torch.float32
)
for i, a in enumerate(sequence):
assert a in vocab
foldseek_enc[i, vocab[a]] = 1
return foldseek_enc.unsqueeze(0)
def get_T5_model(model_dir):
print("Loading T5 from: {}".format(model_dir))
model = T5EncoderModel.from_pretrained(model_dir).to(device)
model = model.eval()
vocab = T5Tokenizer.from_pretrained(model_dir, do_lower_case=False )
return model, vocab
def read_fasta( fasta_path, split_char, id_field ):
'''
Reads in fasta file containing multiple sequences.
Returns dictionary of holding multiple sequences or only single
sequence, depending on input file.
'''
sequences = dict()
with open( fasta_path, 'r' ) as fasta_f:
for line in fasta_f:
# get uniprot ID from header and create new entry
if line.startswith('>'):
uniprot_id = line.replace('>', '').strip().split(split_char)[id_field]
# replace tokens that are mis-interpreted when loading h5
uniprot_id = uniprot_id.replace("/","_").replace(".","_")
sequences[ uniprot_id ] = ''
else:
s = ''.join( line.split() ).replace("-","")
if s.islower(): # sanity check to avoid mix-up of 3Di and AA input
print("The input file was in lower-case which indicates 3Di-input." +
"This predictor only operates on amino-acid-input (upper-case)." +
"Exiting now ..."
)
return None
else:
sequences[ uniprot_id ] += s
return sequences
def write_predictions(predictions, out_path):
ss_mapping = {
0: "A",
1: "C",
2: "D",
3: "E",
4: "F",
5: "G",
6: "H",
7: "I",
8: "K",
9: "L",
10: "M",
11: "N",
12: "P",
13: "Q",
14: "R",
15: "S",
16: "T",
17: "V",
18: "W",
19: "Y"
}
with open(out_path, 'w+') as out_f:
out_f.write( '\n'.join(
[ ">{}\n{}".format(
seq_id, "".join(list(map(lambda yhat: ss_mapping[int(yhat)], yhats))) )
for seq_id, yhats in predictions.items()
]
) )
print(f"Finished writing results to {out_path}")
return None
def predictions_to_dict(predictions):
ss_mapping = {
0: "A",
1: "C",
2: "D",
3: "E",
4: "F",
5: "G",
6: "H",
7: "I",
8: "K",
9: "L",
10: "M",
11: "N",
12: "P",
13: "Q",
14: "R",
15: "S",
16: "T",
17: "V",
18: "W",
19: "Y"
}
results = {seq_id: "".join(list(map(lambda yhat: ss_mapping[int(yhat)], yhats))) for seq_id, yhats in predictions.items()}
return results
def toCPU(tensor):
if len(tensor.shape) > 1:
return tensor.detach().cpu().squeeze(dim=-1).numpy()
else:
return tensor.detach().cpu().numpy()
def download_file(url,local_path):
if not local_path.parent.is_dir():
local_path.parent.mkdir()
print("Downloading: {}".format(url))
req = request.Request(url, headers={
'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64)'
})
with request.urlopen(req) as response, open(local_path, 'wb') as outfile:
shutil.copyfileobj(response, outfile)
return None
def load_predictor( weights_link="https://rostlab.org/~deepppi/prostt5/cnn_chkpnt/model.pt" , device=torch.device("cpu")):
model = CNN()
checkpoint_p = Path.cwd() / "cnn_chkpnt" / "model.pt"
# if no pre-trained model is available, yet --> download it
if not checkpoint_p.exists():
download_file(weights_link, checkpoint_p)
state = torch.load(checkpoint_p, map_location=device)
model.load_state_dict(state["state_dict"])
model = model.eval()
model = model.to(device)
return model
def get_3di_sequences( seq_dict, model_dir, device,
max_residues=4000, max_seq_len=1000, max_batch=100,report_fn=print,error_fn=print,half_precision=False):
predictions = dict()
prefix = "<AA2fold>"
model, vocab = get_T5_model(model_dir)
predictor = load_predictor(device=device)
if half_precision:
model = model.half()
predictor = predictor.half()
report_fn('Total number of sequences: {}'.format(len(seq_dict)))
avg_length = sum([ len(seq) for _, seq in seq_dict.items()]) / len(seq_dict)
n_long = sum([ 1 for _, seq in seq_dict.items() if len(seq)>max_seq_len])
# sort sequences by length to trigger OOM at the beginning
seq_dict = sorted( seq_dict.items(), key=lambda kv: len( seq_dict[kv[0]] ), reverse=True )
report_fn("Average sequence length: {}".format(avg_length))
report_fn("Number of sequences >{}: {}".format(max_seq_len, n_long))
start = time.time()
batch = list()
for seq_idx, (pdb_id, seq) in enumerate(seq_dict,1):
# replace non-standard AAs
seq = seq.replace('U','X').replace('Z','X').replace('O','X')
seq_len = len(seq)
seq = prefix + ' ' + ' '.join(list(seq))
batch.append((pdb_id,seq,seq_len))
# count residues in current batch and add the last sequence length to
# avoid that batches with (n_res_batch > max_residues) get processed
n_res_batch = sum([ s_len for _, _, s_len in batch ]) + seq_len
if len(batch) >= max_batch or n_res_batch>=max_residues or seq_idx==len(seq_dict) or seq_len>max_seq_len:
pdb_ids, seqs, seq_lens = zip(*batch)
batch = list()
token_encoding = vocab.batch_encode_plus(seqs,
add_special_tokens=True,
padding="longest",
return_tensors='pt'
).to(device)
try:
with torch.no_grad():
embedding_repr = model(token_encoding.input_ids,
attention_mask=token_encoding.attention_mask
)
except RuntimeError:
error_fn("RuntimeError during embedding for {} (L={})".format(
pdb_id, seq_len)
)
continue
# ProtT5 appends a special tokens at the end of each sequence
# Mask this also out during inference while taking into account the prefix
for idx, s_len in enumerate(seq_lens):
token_encoding.attention_mask[idx,s_len+1] = 0
# extract last hidden states (=embeddings)
residue_embedding = embedding_repr.last_hidden_state.detach()
# mask out padded elements in the attention output (can be non-zero) for further processing/prediction
residue_embedding = residue_embedding*token_encoding.attention_mask.unsqueeze(dim=-1)
# slice off embedding of special token prepended before to each sequence
residue_embedding = residue_embedding[:,1:]
prediction = predictor(residue_embedding)
prediction = toCPU(torch.max( prediction, dim=1, keepdim=True )[1] ).astype(np.byte)
# batch-size x seq_len x embedding_dim
# extra token is added at the end of the seq
for batch_idx, identifier in enumerate(pdb_ids):
s_len = seq_lens[batch_idx]
# slice off padding and special token appended to the end of the sequence
predictions[identifier] = prediction[batch_idx,:, 0:s_len].squeeze()
assert s_len == len(predictions[identifier]), error_fn(f"Length mismatch for {identifier}: is:{len(predictions[identifier])} vs should:{s_len}")
end = time.time()
report_fn('Total number of predictions: {}'.format(len(predictions)))
report_fn('Total time: {:.2f}[s]; time/prot: {:.4f}[s]; avg. len= {:.2f}'.format(
end-start, (end-start)/len(predictions), avg_length))
return predictions
def create_arg_parser():
""""Creates and returns the ArgumentParser object."""
# Instantiate the parser
parser = argparse.ArgumentParser(description=(
'embed.py creates ProstT5-Encoder embeddings for a given text '+
' file containing sequence(s) in FASTA-format.' +
'Example: python predict_3Di.py --input /path/to/some_AA_sequences.fasta --output /path/to/some_3Di_sequences.fasta --half 1' ) )
# Required positional argument
parser.add_argument( '-i', '--input', required=True, type=str,
help='A path to a fasta-formatted text file containing protein sequence(s).')
# Optional positional argument
parser.add_argument( '-o', '--output', required=True, type=str,
help='A path for saving the created embeddings as NumPy npz file.')
# Required positional argument
parser.add_argument('--model', required=False, type=str,
default="Rostlab/ProstT5",
help='Either a path to a directory holding the checkpoint for a pre-trained model or a huggingface repository link.' )
# Optional argument
parser.add_argument('--split_char', type=str,
default='!',
help='The character for splitting the FASTA header in order to retrieve ' +
"the protein identifier. Should be used in conjunction with --id." +
"Default: '!' ")
# Optional argument
parser.add_argument('--id', type=int,
default=0,
help='The index for the uniprot identifier field after splitting the ' +
"FASTA header after each symbole in ['|', '#', ':', ' ']." +
'Default: 0')
parser.add_argument('--half', type=int,
default=1,
help="Whether to use half_precision or not. Default: 1 (half-precision)")
return parser
def main():
parser = create_arg_parser()
args = parser.parse_args()
seq_path = Path( args.input ) # path to input FASTAS
out_path = Path( args.output) # path where predictions should be written to
model_dir = args.model # path/repo_link to checkpoint
if out_path.is_file():
print("Output file is already existing and will be overwritten ...")
split_char = args.split_char
id_field = args.id
half_precision = False if int(args.half) == 0 else True
assert not (half_precision and device=="cpu"), print("Running fp16 on CPU is not supported, yet")
seq_dict = read_fasta( seq_path, split_char, id_field )
predictions = get_3di_sequences(
seq_dict,
model_dir,
)
print("Writing results now to disk ...")
write_predictions(predictions,out_path)
if __name__ == '__main__':
main() |