Spaces:
Runtime error
Runtime error
import tempfile | |
import imageio | |
import numpy as np | |
import PIL.Image | |
import torch | |
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config | |
from shap_e.diffusion.sample import sample_latents | |
from shap_e.models.download import load_config, load_model | |
from shap_e.models.nn.camera import (DifferentiableCameraBatch, | |
DifferentiableProjectiveCamera) | |
from shap_e.models.transmitter.base import Transmitter, VectorDecoder | |
from shap_e.util.collections import AttrDict | |
from shap_e.util.image_util import load_image | |
# Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L15-L42 | |
def create_pan_cameras(size: int, | |
device: torch.device) -> DifferentiableCameraBatch: | |
origins = [] | |
xs = [] | |
ys = [] | |
zs = [] | |
for theta in np.linspace(0, 2 * np.pi, num=20): | |
z = np.array([np.sin(theta), np.cos(theta), -0.5]) | |
z /= np.sqrt(np.sum(z**2)) | |
origin = -z * 4 | |
x = np.array([np.cos(theta), -np.sin(theta), 0.0]) | |
y = np.cross(z, x) | |
origins.append(origin) | |
xs.append(x) | |
ys.append(y) | |
zs.append(z) | |
return DifferentiableCameraBatch( | |
shape=(1, len(xs)), | |
flat_camera=DifferentiableProjectiveCamera( | |
origin=torch.from_numpy(np.stack(origins, | |
axis=0)).float().to(device), | |
x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device), | |
y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device), | |
z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device), | |
width=size, | |
height=size, | |
x_fov=0.7, | |
y_fov=0.7, | |
), | |
) | |
# Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L45-L60 | |
def decode_latent_images( | |
xm: Transmitter | VectorDecoder, | |
latent: torch.Tensor, | |
cameras: DifferentiableCameraBatch, | |
rendering_mode: str = 'stf', | |
): | |
decoded = xm.renderer.render_views( | |
AttrDict(cameras=cameras), | |
params=(xm.encoder if isinstance(xm, Transmitter) else | |
xm).bottleneck_to_params(latent[None]), | |
options=AttrDict(rendering_mode=rendering_mode, | |
render_with_direction=False), | |
) | |
arr = decoded.channels.clamp(0, 255).to(torch.uint8)[0].cpu().numpy() | |
return [PIL.Image.fromarray(x) for x in arr] | |
class Model: | |
def __init__(self): | |
self.device = torch.device( | |
'cuda' if torch.cuda.is_available() else 'cpu') | |
self.xm = load_model('transmitter', device=self.device) | |
self.diffusion = diffusion_from_config(load_config('diffusion')) | |
self.model_name = '' | |
self.model = None | |
def load_model(self, model_name: str) -> None: | |
assert model_name in ['text300M', 'image300M'] | |
if model_name == self.model_name: | |
return | |
self.model = load_model(model_name, device=self.device) | |
self.model_name = model_name | |
def to_video(frames: list[PIL.Image.Image], fps: int = 5) -> str: | |
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps) | |
for frame in frames: | |
writer.append_data(np.asarray(frame)) | |
writer.close() | |
return out_file.name | |
def run_text(self, | |
prompt: str, | |
seed: int = 0, | |
guidance_scale: float = 15.0, | |
num_steps: int = 64, | |
output_image_size: int = 64, | |
render_mode: str = 'nerf') -> str: | |
self.load_model('text300M') | |
torch.manual_seed(seed) | |
latents = sample_latents( | |
batch_size=1, | |
model=self.model, | |
diffusion=self.diffusion, | |
guidance_scale=guidance_scale, | |
model_kwargs=dict(texts=[prompt]), | |
progress=True, | |
clip_denoised=True, | |
use_fp16=True, | |
use_karras=True, | |
karras_steps=num_steps, | |
sigma_min=1e-3, | |
sigma_max=160, | |
s_churn=0, | |
) | |
cameras = create_pan_cameras(output_image_size, self.device) | |
frames = decode_latent_images(self.xm, | |
latents[0], | |
cameras, | |
rendering_mode=render_mode) | |
return self.to_video(frames) | |
def run_image(self, | |
image_path: str, | |
seed: int = 0, | |
guidance_scale: float = 3.0, | |
num_steps: int = 64, | |
output_image_size: int = 64, | |
render_mode: str = 'nerf') -> str: | |
self.load_model('image300M') | |
torch.manual_seed(seed) | |
image = load_image(image_path) | |
latents = sample_latents( | |
batch_size=1, | |
model=self.model, | |
diffusion=self.diffusion, | |
guidance_scale=guidance_scale, | |
model_kwargs=dict(images=[image]), | |
progress=True, | |
clip_denoised=True, | |
use_fp16=True, | |
use_karras=True, | |
karras_steps=num_steps, | |
sigma_min=1e-3, | |
sigma_max=160, | |
s_churn=0, | |
) | |
cameras = create_pan_cameras(output_image_size, self.device) | |
frames = decode_latent_images(self.xm, | |
latents[0], | |
cameras, | |
rendering_mode=render_mode) | |
return self.to_video(frames) | |