TFM-DATCOM / app.py
sgonzalezsilot's picture
Copiando proyecto TFG
05d6563
raw
history blame
2.62 kB
import gradio as gr
from huggingface_hub import from_pretrained_keras
from huggingface_hub import KerasModelHubMixin
import transformers
from transformers import AutoTokenizer
import numpy as np
m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def bert_encode(tokenizer,data,maximum_length) :
input_ids = []
attention_masks = []
for i in range(len(data)):
encoded = tokenizer.encode_plus(
data[i],
add_special_tokens=True,
max_length=maximum_length,
pad_to_max_length=True,
truncation = True,
return_attention_mask=True,
)
input_ids.append(encoded['input_ids'])
attention_masks.append(encoded['attention_mask'])
return np.array(input_ids),np.array(attention_masks)
# train_encodings = tokenizer(train_texts, truncation=True, padding=True)
# test_encodings = tokenizer(test_texts, truncation=True, padding=True)
def get_news(input_text):
sentence_length = 110
train_input_ids,train_attention_masks = bert_encode(tokenizer,[input_text],sentence_length)
pred = m.predict([train_input_ids,train_attention_masks])
pred = np.round(pred)
pred = pred.flatten()
if pred == 1:
result = "Fake News"
else:
result = "True News"
return result
tweet_input = gr.Textbox(label = "Enter the tweet")
output = gr.Textbox(label="Result")
descripcion = (
"""
<center>
Demo of the Covid-Twitter Fake News Detection System from my thesis.
</center>
"""
)
iface = gr.Interface(fn = get_news,
inputs = tweet_input,
outputs = output,
title = 'Covid Fake News Detection System',
description=descripcion,
examples=["CDC Recommends Mothers Stop Breastfeeding To Boost Vaccine Efficacy",
"An article claiming that Bill Gates' vaccine would modify human DNA.",
"In the first half of 2020 WHO coordinated the logistics &amp; shipped 😷More than 3M surgical masks 🧤More than 2M gloves 🧰More than 1M diagnostic kits 🥼More than 200K gowns 🛡️More than 100K face shields to 135 countries across the🌍🌎🌏. https://t.co/iz4YQkbSGM",
"Many COVID-19 treatments may be associated with adverse skin reactions and should be considered in a differential diagnosis new report says. https://t.co/GLSeYX2VDq"])
iface.launch()