Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------------ | |
# Reference: https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/data/datasets/register_ade20k_panoptic.py | |
# Modified by Jitesh Jain (https://github.com/praeclarumjj3) | |
# ------------------------------------------------------------------------------ | |
import json | |
import os | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.utils.file_io import PathManager | |
ADE20K_150_CATEGORIES = [ | |
{"color": [120, 120, 120], "id": 0, "isthing": 0, "name": "wall"}, | |
{"color": [180, 120, 120], "id": 1, "isthing": 0, "name": "building"}, | |
{"color": [6, 230, 230], "id": 2, "isthing": 0, "name": "sky"}, | |
{"color": [80, 50, 50], "id": 3, "isthing": 0, "name": "floor"}, | |
{"color": [4, 200, 3], "id": 4, "isthing": 0, "name": "tree"}, | |
{"color": [120, 120, 80], "id": 5, "isthing": 0, "name": "ceiling"}, | |
{"color": [140, 140, 140], "id": 6, "isthing": 0, "name": "road, route"}, | |
{"color": [204, 5, 255], "id": 7, "isthing": 1, "name": "bed"}, | |
{"color": [230, 230, 230], "id": 8, "isthing": 1, "name": "window "}, | |
{"color": [4, 250, 7], "id": 9, "isthing": 0, "name": "grass"}, | |
{"color": [224, 5, 255], "id": 10, "isthing": 1, "name": "cabinet"}, | |
{"color": [235, 255, 7], "id": 11, "isthing": 0, "name": "sidewalk, pavement"}, | |
{"color": [150, 5, 61], "id": 12, "isthing": 1, "name": "person"}, | |
{"color": [120, 120, 70], "id": 13, "isthing": 0, "name": "earth, ground"}, | |
{"color": [8, 255, 51], "id": 14, "isthing": 1, "name": "door"}, | |
{"color": [255, 6, 82], "id": 15, "isthing": 1, "name": "table"}, | |
{"color": [143, 255, 140], "id": 16, "isthing": 0, "name": "mountain, mount"}, | |
{"color": [204, 255, 4], "id": 17, "isthing": 0, "name": "plant"}, | |
{"color": [255, 51, 7], "id": 18, "isthing": 1, "name": "curtain"}, | |
{"color": [204, 70, 3], "id": 19, "isthing": 1, "name": "chair"}, | |
{"color": [0, 102, 200], "id": 20, "isthing": 1, "name": "car"}, | |
{"color": [61, 230, 250], "id": 21, "isthing": 0, "name": "water"}, | |
{"color": [255, 6, 51], "id": 22, "isthing": 1, "name": "painting, picture"}, | |
{"color": [11, 102, 255], "id": 23, "isthing": 1, "name": "sofa"}, | |
{"color": [255, 7, 71], "id": 24, "isthing": 1, "name": "shelf"}, | |
{"color": [255, 9, 224], "id": 25, "isthing": 0, "name": "house"}, | |
{"color": [9, 7, 230], "id": 26, "isthing": 0, "name": "sea"}, | |
{"color": [220, 220, 220], "id": 27, "isthing": 1, "name": "mirror"}, | |
{"color": [255, 9, 92], "id": 28, "isthing": 0, "name": "rug"}, | |
{"color": [112, 9, 255], "id": 29, "isthing": 0, "name": "field"}, | |
{"color": [8, 255, 214], "id": 30, "isthing": 1, "name": "armchair"}, | |
{"color": [7, 255, 224], "id": 31, "isthing": 1, "name": "seat"}, | |
{"color": [255, 184, 6], "id": 32, "isthing": 1, "name": "fence"}, | |
{"color": [10, 255, 71], "id": 33, "isthing": 1, "name": "desk"}, | |
{"color": [255, 41, 10], "id": 34, "isthing": 0, "name": "rock, stone"}, | |
{"color": [7, 255, 255], "id": 35, "isthing": 1, "name": "wardrobe, closet, press"}, | |
{"color": [224, 255, 8], "id": 36, "isthing": 1, "name": "lamp"}, | |
{"color": [102, 8, 255], "id": 37, "isthing": 1, "name": "tub"}, | |
{"color": [255, 61, 6], "id": 38, "isthing": 1, "name": "rail"}, | |
{"color": [255, 194, 7], "id": 39, "isthing": 1, "name": "cushion"}, | |
{"color": [255, 122, 8], "id": 40, "isthing": 0, "name": "base, pedestal, stand"}, | |
{"color": [0, 255, 20], "id": 41, "isthing": 1, "name": "box"}, | |
{"color": [255, 8, 41], "id": 42, "isthing": 1, "name": "column, pillar"}, | |
{"color": [255, 5, 153], "id": 43, "isthing": 1, "name": "signboard, sign"}, | |
{ | |
"color": [6, 51, 255], | |
"id": 44, | |
"isthing": 1, | |
"name": "chest of drawers, chest, bureau, dresser", | |
}, | |
{"color": [235, 12, 255], "id": 45, "isthing": 1, "name": "counter"}, | |
{"color": [160, 150, 20], "id": 46, "isthing": 0, "name": "sand"}, | |
{"color": [0, 163, 255], "id": 47, "isthing": 1, "name": "sink"}, | |
{"color": [140, 140, 140], "id": 48, "isthing": 0, "name": "skyscraper"}, | |
{"color": [250, 10, 15], "id": 49, "isthing": 1, "name": "fireplace"}, | |
{"color": [20, 255, 0], "id": 50, "isthing": 1, "name": "refrigerator, icebox"}, | |
{"color": [31, 255, 0], "id": 51, "isthing": 0, "name": "grandstand, covered stand"}, | |
{"color": [255, 31, 0], "id": 52, "isthing": 0, "name": "path"}, | |
{"color": [255, 224, 0], "id": 53, "isthing": 1, "name": "stairs"}, | |
{"color": [153, 255, 0], "id": 54, "isthing": 0, "name": "runway"}, | |
{"color": [0, 0, 255], "id": 55, "isthing": 1, "name": "case, display case, showcase, vitrine"}, | |
{ | |
"color": [255, 71, 0], | |
"id": 56, | |
"isthing": 1, | |
"name": "pool table, billiard table, snooker table", | |
}, | |
{"color": [0, 235, 255], "id": 57, "isthing": 1, "name": "pillow"}, | |
{"color": [0, 173, 255], "id": 58, "isthing": 1, "name": "screen door, screen"}, | |
{"color": [31, 0, 255], "id": 59, "isthing": 0, "name": "stairway, staircase"}, | |
{"color": [11, 200, 200], "id": 60, "isthing": 0, "name": "river"}, | |
{"color": [255, 82, 0], "id": 61, "isthing": 0, "name": "bridge, span"}, | |
{"color": [0, 255, 245], "id": 62, "isthing": 1, "name": "bookcase"}, | |
{"color": [0, 61, 255], "id": 63, "isthing": 0, "name": "blind, screen"}, | |
{"color": [0, 255, 112], "id": 64, "isthing": 1, "name": "coffee table"}, | |
{ | |
"color": [0, 255, 133], | |
"id": 65, | |
"isthing": 1, | |
"name": "toilet, can, commode, crapper, pot, potty, stool, throne", | |
}, | |
{"color": [255, 0, 0], "id": 66, "isthing": 1, "name": "flower"}, | |
{"color": [255, 163, 0], "id": 67, "isthing": 1, "name": "book"}, | |
{"color": [255, 102, 0], "id": 68, "isthing": 0, "name": "hill"}, | |
{"color": [194, 255, 0], "id": 69, "isthing": 1, "name": "bench"}, | |
{"color": [0, 143, 255], "id": 70, "isthing": 1, "name": "countertop"}, | |
{"color": [51, 255, 0], "id": 71, "isthing": 1, "name": "stove"}, | |
{"color": [0, 82, 255], "id": 72, "isthing": 1, "name": "palm, palm tree"}, | |
{"color": [0, 255, 41], "id": 73, "isthing": 1, "name": "kitchen island"}, | |
{"color": [0, 255, 173], "id": 74, "isthing": 1, "name": "computer"}, | |
{"color": [10, 0, 255], "id": 75, "isthing": 1, "name": "swivel chair"}, | |
{"color": [173, 255, 0], "id": 76, "isthing": 1, "name": "boat"}, | |
{"color": [0, 255, 153], "id": 77, "isthing": 0, "name": "bar"}, | |
{"color": [255, 92, 0], "id": 78, "isthing": 1, "name": "arcade machine"}, | |
{"color": [255, 0, 255], "id": 79, "isthing": 0, "name": "hovel, hut, hutch, shack, shanty"}, | |
{"color": [255, 0, 245], "id": 80, "isthing": 1, "name": "bus"}, | |
{"color": [255, 0, 102], "id": 81, "isthing": 1, "name": "towel"}, | |
{"color": [255, 173, 0], "id": 82, "isthing": 1, "name": "light"}, | |
{"color": [255, 0, 20], "id": 83, "isthing": 1, "name": "truck"}, | |
{"color": [255, 184, 184], "id": 84, "isthing": 0, "name": "tower"}, | |
{"color": [0, 31, 255], "id": 85, "isthing": 1, "name": "chandelier"}, | |
{"color": [0, 255, 61], "id": 86, "isthing": 1, "name": "awning, sunshade, sunblind"}, | |
{"color": [0, 71, 255], "id": 87, "isthing": 1, "name": "street lamp"}, | |
{"color": [255, 0, 204], "id": 88, "isthing": 1, "name": "booth"}, | |
{"color": [0, 255, 194], "id": 89, "isthing": 1, "name": "tv"}, | |
{"color": [0, 255, 82], "id": 90, "isthing": 1, "name": "plane"}, | |
{"color": [0, 10, 255], "id": 91, "isthing": 0, "name": "dirt track"}, | |
{"color": [0, 112, 255], "id": 92, "isthing": 1, "name": "clothes"}, | |
{"color": [51, 0, 255], "id": 93, "isthing": 1, "name": "pole"}, | |
{"color": [0, 194, 255], "id": 94, "isthing": 0, "name": "land, ground, soil"}, | |
{ | |
"color": [0, 122, 255], | |
"id": 95, | |
"isthing": 1, | |
"name": "bannister, banister, balustrade, balusters, handrail", | |
}, | |
{ | |
"color": [0, 255, 163], | |
"id": 96, | |
"isthing": 0, | |
"name": "escalator, moving staircase, moving stairway", | |
}, | |
{ | |
"color": [255, 153, 0], | |
"id": 97, | |
"isthing": 1, | |
"name": "ottoman, pouf, pouffe, puff, hassock", | |
}, | |
{"color": [0, 255, 10], "id": 98, "isthing": 1, "name": "bottle"}, | |
{"color": [255, 112, 0], "id": 99, "isthing": 0, "name": "buffet, counter, sideboard"}, | |
{ | |
"color": [143, 255, 0], | |
"id": 100, | |
"isthing": 0, | |
"name": "poster, posting, placard, notice, bill, card", | |
}, | |
{"color": [82, 0, 255], "id": 101, "isthing": 0, "name": "stage"}, | |
{"color": [163, 255, 0], "id": 102, "isthing": 1, "name": "van"}, | |
{"color": [255, 235, 0], "id": 103, "isthing": 1, "name": "ship"}, | |
{"color": [8, 184, 170], "id": 104, "isthing": 1, "name": "fountain"}, | |
{ | |
"color": [133, 0, 255], | |
"id": 105, | |
"isthing": 0, | |
"name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter", | |
}, | |
{"color": [0, 255, 92], "id": 106, "isthing": 0, "name": "canopy"}, | |
{ | |
"color": [184, 0, 255], | |
"id": 107, | |
"isthing": 1, | |
"name": "washer, automatic washer, washing machine", | |
}, | |
{"color": [255, 0, 31], "id": 108, "isthing": 1, "name": "plaything, toy"}, | |
{"color": [0, 184, 255], "id": 109, "isthing": 0, "name": "pool"}, | |
{"color": [0, 214, 255], "id": 110, "isthing": 1, "name": "stool"}, | |
{"color": [255, 0, 112], "id": 111, "isthing": 1, "name": "barrel, cask"}, | |
{"color": [92, 255, 0], "id": 112, "isthing": 1, "name": "basket, handbasket"}, | |
{"color": [0, 224, 255], "id": 113, "isthing": 0, "name": "falls"}, | |
{"color": [112, 224, 255], "id": 114, "isthing": 0, "name": "tent"}, | |
{"color": [70, 184, 160], "id": 115, "isthing": 1, "name": "bag"}, | |
{"color": [163, 0, 255], "id": 116, "isthing": 1, "name": "minibike, motorbike"}, | |
{"color": [153, 0, 255], "id": 117, "isthing": 0, "name": "cradle"}, | |
{"color": [71, 255, 0], "id": 118, "isthing": 1, "name": "oven"}, | |
{"color": [255, 0, 163], "id": 119, "isthing": 1, "name": "ball"}, | |
{"color": [255, 204, 0], "id": 120, "isthing": 1, "name": "food, solid food"}, | |
{"color": [255, 0, 143], "id": 121, "isthing": 1, "name": "step, stair"}, | |
{"color": [0, 255, 235], "id": 122, "isthing": 0, "name": "tank, storage tank"}, | |
{"color": [133, 255, 0], "id": 123, "isthing": 1, "name": "trade name"}, | |
{"color": [255, 0, 235], "id": 124, "isthing": 1, "name": "microwave"}, | |
{"color": [245, 0, 255], "id": 125, "isthing": 1, "name": "pot"}, | |
{"color": [255, 0, 122], "id": 126, "isthing": 1, "name": "animal"}, | |
{"color": [255, 245, 0], "id": 127, "isthing": 1, "name": "bicycle"}, | |
{"color": [10, 190, 212], "id": 128, "isthing": 0, "name": "lake"}, | |
{"color": [214, 255, 0], "id": 129, "isthing": 1, "name": "dishwasher"}, | |
{"color": [0, 204, 255], "id": 130, "isthing": 1, "name": "screen"}, | |
{"color": [20, 0, 255], "id": 131, "isthing": 0, "name": "blanket, cover"}, | |
{"color": [255, 255, 0], "id": 132, "isthing": 1, "name": "sculpture"}, | |
{"color": [0, 153, 255], "id": 133, "isthing": 1, "name": "hood, exhaust hood"}, | |
{"color": [0, 41, 255], "id": 134, "isthing": 1, "name": "sconce"}, | |
{"color": [0, 255, 204], "id": 135, "isthing": 1, "name": "vase"}, | |
{"color": [41, 0, 255], "id": 136, "isthing": 1, "name": "traffic light"}, | |
{"color": [41, 255, 0], "id": 137, "isthing": 1, "name": "tray"}, | |
{"color": [173, 0, 255], "id": 138, "isthing": 1, "name": "trash can"}, | |
{"color": [0, 245, 255], "id": 139, "isthing": 1, "name": "fan"}, | |
{"color": [71, 0, 255], "id": 140, "isthing": 0, "name": "pier"}, | |
{"color": [122, 0, 255], "id": 141, "isthing": 0, "name": "crt screen"}, | |
{"color": [0, 255, 184], "id": 142, "isthing": 1, "name": "plate"}, | |
{"color": [0, 92, 255], "id": 143, "isthing": 1, "name": "monitor"}, | |
{"color": [184, 255, 0], "id": 144, "isthing": 1, "name": "bulletin board"}, | |
{"color": [0, 133, 255], "id": 145, "isthing": 0, "name": "shower"}, | |
{"color": [255, 214, 0], "id": 146, "isthing": 1, "name": "radiator"}, | |
{"color": [25, 194, 194], "id": 147, "isthing": 1, "name": "glass, drinking glass"}, | |
{"color": [102, 255, 0], "id": 148, "isthing": 1, "name": "clock"}, | |
{"color": [92, 0, 255], "id": 149, "isthing": 1, "name": "flag"}, | |
] | |
ADE20k_COLORS = [k["color"] for k in ADE20K_150_CATEGORIES] | |
MetadataCatalog.get("ade20k_sem_seg_train").set( | |
stuff_colors=ADE20k_COLORS[:], | |
) | |
MetadataCatalog.get("ade20k_sem_seg_val").set( | |
stuff_colors=ADE20k_COLORS[:], | |
) | |
def load_ade20k_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta): | |
""" | |
Args: | |
image_dir (str): path to the raw dataset. e.g., "~/coco/train2017". | |
gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017". | |
json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json". | |
Returns: | |
list[dict]: a list of dicts in Detectron2 standard format. (See | |
`Using Custom Datasets </tutorials/datasets.html>`_ ) | |
""" | |
def _convert_category_id(segment_info, meta): | |
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]: | |
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][ | |
segment_info["category_id"] | |
] | |
segment_info["isthing"] = True | |
else: | |
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][ | |
segment_info["category_id"] | |
] | |
segment_info["isthing"] = False | |
return segment_info | |
with PathManager.open(json_file) as f: | |
json_info = json.load(f) | |
ret = [] | |
for ann in json_info["annotations"]: | |
image_id = ann["image_id"] | |
# TODO: currently we assume image and label has the same filename but | |
# different extension, and images have extension ".jpg" for COCO. Need | |
# to make image extension a user-provided argument if we extend this | |
# function to support other COCO-like datasets. | |
image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg") | |
label_file = os.path.join(gt_dir, ann["file_name"]) | |
sem_label_file = os.path.join(semseg_dir, ann["file_name"]) | |
segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]] | |
ret.append( | |
{ | |
"file_name": image_file, | |
"image_id": image_id, | |
"pan_seg_file_name": label_file, | |
"sem_seg_file_name": sem_label_file, | |
"segments_info": segments_info, | |
} | |
) | |
assert len(ret), f"No images found in {image_dir}!" | |
assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"] | |
assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"] | |
assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"] | |
return ret | |
def register_ade20k_panoptic( | |
name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None, | |
): | |
""" | |
Register a "standard" version of ADE20k panoptic segmentation dataset named `name`. | |
The dictionaries in this registered dataset follows detectron2's standard format. | |
Hence it's called "standard". | |
Args: | |
name (str): the name that identifies a dataset, | |
e.g. "ade20k_panoptic_train" | |
metadata (dict): extra metadata associated with this dataset. | |
image_root (str): directory which contains all the images | |
panoptic_root (str): directory which contains panoptic annotation images in COCO format | |
panoptic_json (str): path to the json panoptic annotation file in COCO format | |
sem_seg_root (none): not used, to be consistent with | |
`register_coco_panoptic_separated`. | |
instances_json (str): path to the json instance annotation file | |
""" | |
panoptic_name = name | |
DatasetCatalog.register( | |
panoptic_name, | |
lambda: load_ade20k_panoptic_json( | |
panoptic_json, image_root, panoptic_root, semantic_root, metadata | |
), | |
) | |
MetadataCatalog.get(panoptic_name).set( | |
panoptic_root=panoptic_root, | |
image_root=image_root, | |
panoptic_json=panoptic_json, | |
json_file=instances_json, | |
evaluator_type="ade20k_panoptic_seg", | |
ignore_label=255, | |
label_divisor=1000, | |
**metadata, | |
) | |
_PREDEFINED_SPLITS_ADE20K_PANOPTIC = { | |
"ade20k_panoptic_train": ( | |
"ADEChallengeData2016/images/training", | |
"ADEChallengeData2016/ade20k_panoptic_train", | |
"ADEChallengeData2016/ade20k_panoptic_train.json", | |
"ADEChallengeData2016/annotations_detectron2/training", | |
"ADEChallengeData2016/ade20k_instance_train.json", | |
), | |
"ade20k_panoptic_val": ( | |
"ADEChallengeData2016/images/validation", | |
"ADEChallengeData2016/ade20k_panoptic_val", | |
"ADEChallengeData2016/ade20k_panoptic_val.json", | |
"ADEChallengeData2016/annotations_detectron2/validation", | |
"ADEChallengeData2016/ade20k_instance_val.json", | |
), | |
} | |
def get_metadata(): | |
meta = {} | |
# The following metadata maps contiguous id from [0, #thing categories + | |
# #stuff categories) to their names and colors. We have to replica of the | |
# same name and color under "thing_*" and "stuff_*" because the current | |
# visualization function in D2 handles thing and class classes differently | |
# due to some heuristic used in Panoptic FPN. We keep the same naming to | |
# enable reusing existing visualization functions. | |
thing_classes = [k["name"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] | |
thing_colors = [k["color"] for k in ADE20K_150_CATEGORIES if k["isthing"] == 1] | |
stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES] | |
stuff_colors = [k["color"] for k in ADE20K_150_CATEGORIES] | |
meta["thing_classes"] = thing_classes | |
meta["thing_colors"] = thing_colors | |
meta["stuff_classes"] = stuff_classes | |
meta["stuff_colors"] = stuff_colors | |
# Convert category id for training: | |
# category id: like semantic segmentation, it is the class id for each | |
# pixel. Since there are some classes not used in evaluation, the category | |
# id is not always contiguous and thus we have two set of category ids: | |
# - original category id: category id in the original dataset, mainly | |
# used for evaluation. | |
# - contiguous category id: [0, #classes), in order to train the linear | |
# softmax classifier. | |
thing_dataset_id_to_contiguous_id = {} | |
stuff_dataset_id_to_contiguous_id = {} | |
for i, cat in enumerate(ADE20K_150_CATEGORIES): | |
if cat["isthing"]: | |
thing_dataset_id_to_contiguous_id[cat["id"]] = i | |
# else: | |
# stuff_dataset_id_to_contiguous_id[cat["id"]] = i | |
# in order to use sem_seg evaluator | |
stuff_dataset_id_to_contiguous_id[cat["id"]] = i | |
meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id | |
meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id | |
return meta | |
def register_all_ade20k_panoptic(root): | |
metadata = get_metadata() | |
for ( | |
prefix, | |
(image_root, panoptic_root, panoptic_json, semantic_root, instance_json), | |
) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items(): | |
# The "standard" version of COCO panoptic segmentation dataset, | |
# e.g. used by Panoptic-DeepLab | |
register_ade20k_panoptic( | |
prefix, | |
metadata, | |
os.path.join(root, image_root), | |
os.path.join(root, panoptic_root), | |
os.path.join(root, semantic_root), | |
os.path.join(root, panoptic_json), | |
os.path.join(root, instance_json), | |
) | |
_root = os.getenv("DETECTRON2_DATASETS", "datasets") | |
register_all_ade20k_panoptic(_root) | |