Spaces:
Runtime error
Runtime error
import random | |
import string | |
import os | |
from math import sqrt | |
class NaiveDB: | |
def __init__(self): | |
self.verbose = False | |
self.init_db() | |
def init_db(self): | |
if self.verbose: | |
print("call init_db") | |
self.stories = [] | |
self.norms = [] | |
self.vecs = [] | |
self.flags = [] # 用于标记每个story是否可以被搜索 | |
self.metas = [] # 用于存储每个story的meta信息 | |
self.last_search_ids = [] # 用于存储上一次搜索的结果 | |
def build_db(self, stories, vecs, flags = None, metas = None): | |
self.stories = stories | |
self.vecs = vecs | |
self.flags = flags if flags else [True for _ in self.stories] | |
self.metas = metas if metas else [{} for _ in self.stories] | |
self.recompute_norm() | |
def save(self, file_path): | |
print( "warning! directly save folder from dbtype NaiveDB has not been implemented yet, try use role_from_hf to load role instead" ) | |
def load(self, file_path): | |
print( "warning! directly load folder from dbtype NaiveDB has not been implemented yet, try use role_from_hf to load role instead" ) | |
def recompute_norm( self ): | |
# 补全这部分代码,self.norms 分别存储每个vector的l2 norm | |
# 计算每个向量的L2范数 | |
self.norms = [sqrt(sum([x**2 for x in vec])) for vec in self.vecs] | |
def get_stories_with_id(self, ids ): | |
return [self.stories[i] for i in ids] | |
def clean_flag(self): | |
self.flags = [True for _ in self.stories] | |
def disable_story_with_ids(self, close_ids ): | |
for id in close_ids: | |
self.flags[id] = False | |
def close_last_search(self): | |
for id in self.last_search_ids: | |
self.flags[id] = False | |
def search(self, query_vector , n_results): | |
if self.verbose: | |
print("call search") | |
if len(self.norms) != len(self.vecs): | |
self.recompute_norm() | |
# 计算查询向量的范数 | |
query_norm = sqrt(sum([x**2 for x in query_vector])) | |
idxs = list(range(len(self.vecs))) | |
# 计算余弦相似度 | |
similarities = [] | |
for vec, norm, idx in zip(self.vecs, self.norms, idxs ): | |
if len(self.flags) == len(self.vecs) and not self.flags[idx]: | |
continue | |
dot_product = sum(q * v for q, v in zip(query_vector, vec)) | |
if query_norm < 1e-20: | |
similarities.append( (random.random(), idx) ) | |
continue | |
cosine_similarity = dot_product / (query_norm * norm) | |
similarities.append( ( cosine_similarity, idx) ) | |
# 获取最相似的n_results个结果, 使用第0个字段进行排序 | |
similarities.sort(key=lambda x: x[0], reverse=True) | |
self.last_search_ids = [x[1] for x in similarities[:n_results]] | |
top_indices = [x[1] for x in similarities[:n_results]] | |
return top_indices | |