Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,734 Bytes
aa5ee46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import torch
import torch.nn as nn
from torch.autograd import Variable
import math
class PositionalEncoding_RGB(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout=0.1, max_len=50):
super(PositionalEncoding_RGB, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
def calc_receptive_field(layers, imsize, layer_names=None):
if layer_names is not None:
print("-------Net summary------")
currentLayer = [imsize, 1, 1, 0.5]
for l_id, layer in enumerate(layers):
conv = [
layer[key][-1] if type(layer[key]) in [list, tuple] else layer[key]
for key in ['kernel_size', 'stride', 'padding']
]
currentLayer = outFromIn(conv, currentLayer)
if 'maxpool' in layer:
conv = [
(layer['maxpool'][key][-1] if type(layer['maxpool'][key])
in [list, tuple] else layer['maxpool'][key]) if
(not key == 'padding' or 'padding' in layer['maxpool']) else 0
for key in ['kernel_size', 'stride', 'padding']
]
currentLayer = outFromIn(conv, currentLayer, ceil_mode=False)
return currentLayer
def outFromIn(conv, layerIn, ceil_mode=True):
n_in = layerIn[0]
j_in = layerIn[1]
r_in = layerIn[2]
start_in = layerIn[3]
k = conv[0]
s = conv[1]
p = conv[2]
n_out = math.floor((n_in - k + 2 * p) / s) + 1
actualP = (n_out - 1) * s - n_in + k
pR = math.ceil(actualP / 2)
pL = math.floor(actualP / 2)
j_out = j_in * s
r_out = r_in + (k - 1) * j_in
start_out = start_in + ((k - 1) / 2 - pL) * j_in
return n_out, j_out, r_out, start_out
class DebugModule(nn.Module):
"""
Wrapper class for printing the activation dimensions
"""
def __init__(self, name=None):
super().__init__()
self.name = name
self.debug_log = True
def debug_line(self, layer_str, output, memuse=1, final_call=False):
if self.debug_log:
namestr = '{}: '.format(self.name) if self.name is not None else ''
# print('{}{:80s}: dims {}'.format(namestr, repr(layer_str),
# output.shape))
if final_call:
self.debug_log = False
# print()
class VGGNet(DebugModule):
conv_dict = {
'conv1d': nn.Conv1d,
'conv2d': nn.Conv2d,
'conv3d': nn.Conv3d,
'fc1d': nn.Conv1d,
'fc2d': nn.Conv2d,
'fc3d': nn.Conv3d,
}
pool_dict = {
'conv1d': nn.MaxPool1d,
'conv2d': nn.MaxPool2d,
'conv3d': nn.MaxPool3d,
}
norm_dict = {
'conv1d': nn.BatchNorm1d,
'conv2d': nn.BatchNorm2d,
'conv3d': nn.BatchNorm3d,
'fc1d': nn.BatchNorm1d,
'fc2d': nn.BatchNorm2d,
'fc3d': nn.BatchNorm3d,
}
def __init__(self, n_channels_in, layers):
super(VGGNet, self).__init__()
self.layers = layers
n_channels_prev = n_channels_in
for l_id, lr in enumerate(self.layers):
l_id += 1
name = 'fc' if 'fc' in lr['type'] else 'conv'
conv_type = self.conv_dict[lr['type']]
norm_type = self.norm_dict[lr['type']]
self.__setattr__(
'{:s}{:d}'.format(name, l_id),
conv_type(n_channels_prev,
lr['n_channels'],
kernel_size=lr['kernel_size'],
stride=lr['stride'],
padding=lr['padding']))
n_channels_prev = lr['n_channels']
self.__setattr__('bn{:d}'.format(l_id), norm_type(lr['n_channels']))
if 'maxpool' in lr:
pool_type = self.pool_dict[lr['type']]
padding = lr['maxpool']['padding'] if 'padding' in lr[
'maxpool'] else 0
self.__setattr__(
'mp{:d}'.format(l_id),
pool_type(kernel_size=lr['maxpool']['kernel_size'],
stride=lr['maxpool']['stride'],
padding=padding),
)
def forward(self, inp):
self.debug_line('Input', inp)
out = inp
for l_id, lr in enumerate(self.layers):
l_id += 1
name = 'fc' if 'fc' in lr['type'] else 'conv'
out = self.__getattr__('{:s}{:d}'.format(name, l_id))(out)
out = self.__getattr__('bn{:d}'.format(l_id))(out)
out = nn.ReLU(inplace=True)(out)
self.debug_line(self.__getattr__('{:s}{:d}'.format(name, l_id)),
out)
if 'maxpool' in lr:
out = self.__getattr__('mp{:d}'.format(l_id))(out)
self.debug_line(self.__getattr__('mp{:d}'.format(l_id)), out)
self.debug_line('Output', out, final_call=True)
return out
class NetFC(DebugModule):
def __init__(self, input_dim, hidden_dim, embed_dim):
super(NetFC, self).__init__()
self.fc7 = nn.Conv3d(input_dim, hidden_dim, kernel_size=(1, 1, 1))
self.bn7 = nn.BatchNorm3d(hidden_dim)
self.fc8 = nn.Conv3d(hidden_dim, embed_dim, kernel_size=(1, 1, 1))
def forward(self, inp):
out = self.fc7(inp)
self.debug_line(self.fc7, out)
out = self.bn7(out)
out = nn.ReLU(inplace=True)(out)
out = self.fc8(out)
self.debug_line(self.fc8, out, final_call=True)
return out
class NetFC_2D(DebugModule):
def __init__(self, input_dim, hidden_dim, embed_dim):
super(NetFC_2D, self).__init__()
self.fc7 = nn.Conv2d(input_dim, hidden_dim, kernel_size=(1, 1))
self.bn7 = nn.BatchNorm2d(hidden_dim)
self.fc8 = nn.Conv2d(hidden_dim, embed_dim, kernel_size=(1, 1))
def forward(self, inp):
out = self.fc7(inp)
self.debug_line(self.fc7, out)
out = self.bn7(out)
out = nn.ReLU(inplace=True)(out)
out = self.fc8(out)
self.debug_line(self.fc8, out, final_call=True)
return out |