Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,765 Bytes
3860ffa c4c6512 3860ffa 4b11292 3860ffa c4c6512 3860ffa a613039 3860ffa a613039 3860ffa 4ad47a9 8f3cd14 3860ffa a6436e2 83838b0 a6436e2 83838b0 c4c6512 83838b0 a8e8684 83838b0 a6436e2 850b849 83838b0 3860ffa a613039 3860ffa 83838b0 3860ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
#!/usr/bin/python
import sys, os, argparse, pickle, subprocess, cv2, math
import numpy as np
from shutil import rmtree, copy, copytree
from tqdm import tqdm
import torch
import scenedetect
from scenedetect.video_manager import VideoManager
from scenedetect.scene_manager import SceneManager
from scenedetect.stats_manager import StatsManager
from scenedetect.detectors import ContentDetector
from scipy.interpolate import interp1d
from scipy import signal
from ultralytics import YOLO
from decord import VideoReader
import spaces
parser = argparse.ArgumentParser(description="FaceTracker")
parser.add_argument('--data_dir', type=str, help='directory to save intermediate temp results')
parser.add_argument('--facedet_scale', type=float, default=0.25, help='Scale factor for face detection')
parser.add_argument('--crop_scale', type=float, default=0, help='Scale bounding box')
parser.add_argument('--min_track', type=int, default=50, help='Minimum facetrack duration')
parser.add_argument('--frame_rate', type=int, default=25, help='Frame rate')
parser.add_argument('--num_failed_det', type=int, default=25, help='Number of missed detections allowed before tracking is stopped')
parser.add_argument('--min_frame_size', type=int, default=64, help='Minimum frame size in pixels')
parser.add_argument('--sd_root', type=str, required=True, help='Path to save crops')
parser.add_argument('--work_root', type=str, required=True, help='Path to save metadata files')
parser.add_argument('--data_root', type=str, required=True, help='Directory containing ONLY full uncropped videos')
opt = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def bb_intersection_over_union(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxB[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def track_shot(opt, scenefaces):
print("Tracking video...")
iouThres = 0.5 # Minimum IOU between consecutive face detections
tracks = []
while True:
track = []
for framefaces in scenefaces:
for face in framefaces:
if track == []:
track.append(face)
framefaces.remove(face)
elif face['frame'] - track[-1]['frame'] <= opt.num_failed_det:
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
if iou > iouThres:
track.append(face)
framefaces.remove(face)
continue
else:
break
if track == []:
break
elif len(track) > opt.min_track:
framenum = np.array([f['frame'] for f in track])
bboxes = np.array([np.array(f['bbox']) for f in track])
frame_i = np.arange(framenum[0], framenum[-1] + 1)
bboxes_i = []
for ij in range(0, 4):
interpfn = interp1d(framenum, bboxes[:, ij])
bboxes_i.append(interpfn(frame_i))
bboxes_i = np.stack(bboxes_i, axis=1)
if max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1])) > opt.min_frame_size:
tracks.append({'frame': frame_i, 'bbox': bboxes_i})
return tracks
def check_folder(folder):
if os.path.exists(folder):
return True
return False
def del_folder(folder):
if os.path.exists(folder):
rmtree(folder)
def read_video(o, start_idx):
with open(o, 'rb') as o:
video_stream = VideoReader(o)
if start_idx > 0:
video_stream.skip_frames(start_idx)
return video_stream
def crop_video(opt, track, cropfile, tight_scale=1):
print("Cropping video...")
fourcc = cv2.VideoWriter_fourcc(*'XVID')
vOut = cv2.VideoWriter(cropfile + '.avi', fourcc, opt.frame_rate, (480, 270))
dets = {'x': [], 'y': [], 's': [], 'bbox': track['bbox'], 'frame': track['frame']}
for det in track['bbox']:
# Reduce the size of the bounding box by a small factor if tighter crops are needed (default -> no reduction in size)
width = (det[2] - det[0]) * tight_scale
height = (det[3] - det[1]) * tight_scale
center_x = (det[0] + det[2]) / 2
center_y = (det[1] + det[3]) / 2
dets['s'].append(max(height, width) / 2)
dets['y'].append(center_y) # crop center y
dets['x'].append(center_x) # crop center x
# Smooth detections
dets['s'] = signal.medfilt(dets['s'], kernel_size=13)
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
videofile = os.path.join(opt.avi_dir, 'video.avi')
frame_no_to_start = track['frame'][0]
video_stream = cv2.VideoCapture(videofile)
video_stream.set(cv2.CAP_PROP_POS_FRAMES, frame_no_to_start)
for fidx, frame in enumerate(track['frame']):
cs = opt.crop_scale
bs = dets['s'][fidx] # Detection box size
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
image = video_stream.read()[1]
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), 'constant', constant_values=(110, 110))
my = dets['y'][fidx] + bsi # BBox center Y
mx = dets['x'][fidx] + bsi # BBox center X
face = frame[int(my - bs):int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)):int(mx + bs * (1 + cs))]
vOut.write(cv2.resize(face, (480, 270)))
video_stream.release()
audiotmp = os.path.join(opt.tmp_dir, 'audio.wav')
audiostart = (track['frame'][0]) / opt.frame_rate
audioend = (track['frame'][-1] + 1) / opt.frame_rate
vOut.release()
# ========== CROP AUDIO FILE ==========
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ss %.3f -to %.3f %s" % (os.path.join(opt.avi_dir, 'audio.wav'), audiostart, audioend, audiotmp))
output = subprocess.call(command, shell=True, stdout=None)
copy(audiotmp, cropfile + '.wav')
# print('Written %s' % cropfile)
# print('Mean pos: x %.2f y %.2f s %.2f' % (np.mean(dets['x']), np.mean(dets['y']), np.mean(dets['s'])))
return {'track': track, 'proc_track': dets}
def inference_video(opt, padding=0):
videofile = os.path.join(opt.avi_dir, 'video.avi')
vidObj = cv2.VideoCapture(videofile)
yolo_model = YOLO("yolov9m.pt")
global dets, fidx
dets = []
fidx = 0
print("Detecting people in the video using YOLO (slowest step in the pipeline)...")
def generate_detections():
global dets, fidx
while True:
success, image = vidObj.read()
if not success:
break
image_np = cv2.cvtColor(image.to(device), cv2.COLOR_BGR2RGB)
# Perform person detection
results = yolo_model(image_np, verbose=False)
detections = results[0].boxes
dets.append([])
for i, det in enumerate(detections):
x1, y1, x2, y2 = det.xyxy[0].detach().cpu().numpy()
cls = det.cls[0].detach().cpu().numpy()
conf = det.conf[0].detach().cpu().numpy()
if int(cls) == 0 and conf>0.7: # Class 0 is 'person' in COCO dataset
x1 = max(0, int(x1) - padding)
y1 = max(0, int(y1) - padding)
x2 = min(image_np.shape[1], int(x2) + padding)
y2 = min(image_np.shape[0], int(y2) + padding)
dets[-1].append({'frame': fidx, 'bbox': [x1, y1, x2, y2], 'conf': conf})
fidx += 1
yield
return dets
for _ in tqdm(generate_detections()):
pass
print("Successfully detected people in the video")
savepath = os.path.join(opt.work_dir, 'faces.pckl')
with open(savepath, 'wb') as fil:
pickle.dump(dets, fil)
return dets
def scene_detect(opt):
print("Detecting scenes in the video...")
video_manager = VideoManager([os.path.join(opt.avi_dir, 'video.avi')])
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
scene_manager.add_detector(ContentDetector())
base_timecode = video_manager.get_base_timecode()
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list(base_timecode)
savepath = os.path.join(opt.work_dir, 'scene.pckl')
if scene_list == []:
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
with open(savepath, 'wb') as fil:
pickle.dump(scene_list, fil)
print('%s - scenes detected %d' % (os.path.join(opt.avi_dir, 'video.avi'), len(scene_list)))
return scene_list
def process_video(file):
video_file_name = os.path.basename(file.strip())
sd_dest_folder = opt.sd_root
work_dest_folder = opt.work_root
del_folder(sd_dest_folder)
del_folder(work_dest_folder)
setattr(opt, 'videofile', file)
if os.path.exists(opt.work_dir):
rmtree(opt.work_dir)
if os.path.exists(opt.crop_dir):
rmtree(opt.crop_dir)
if os.path.exists(opt.avi_dir):
rmtree(opt.avi_dir)
if os.path.exists(opt.frames_dir):
rmtree(opt.frames_dir)
if os.path.exists(opt.tmp_dir):
rmtree(opt.tmp_dir)
os.makedirs(opt.work_dir)
os.makedirs(opt.crop_dir)
os.makedirs(opt.avi_dir)
os.makedirs(opt.frames_dir)
os.makedirs(opt.tmp_dir)
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -qscale:v 2 -async 1 -r 25 %s" % (opt.videofile,
os.path.join(opt.avi_dir,
'video.avi')))
output = subprocess.call(command, shell=True, stdout=None)
if output != 0:
return
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s" % (os.path.join(opt.avi_dir,
'video.avi'),
os.path.join(opt.avi_dir,
'audio.wav')))
output = subprocess.call(command, shell=True, stdout=None)
if output != 0:
return
faces = inference_video(opt)
try:
scene = scene_detect(opt)
except scenedetect.video_stream.VideoOpenFailure:
return
allscenes = []
for shot in scene:
if shot[1].frame_num - shot[0].frame_num >= opt.min_track:
allscenes.append(track_shot(opt, faces[shot[0].frame_num:shot[1].frame_num]))
alltracks = []
for sc_num in range(len(allscenes)):
vidtracks = []
for ii, track in enumerate(allscenes[sc_num]):
os.makedirs(os.path.join(opt.crop_dir, 'scene_'+str(sc_num)), exist_ok=True)
vidtracks.append(crop_video(opt, track, os.path.join(opt.crop_dir, 'scene_'+str(sc_num), '%05d' % ii)))
alltracks.append(vidtracks)
savepath = os.path.join(opt.work_dir, 'tracks.pckl')
with open(savepath, 'wb') as fil:
pickle.dump(alltracks, fil)
rmtree(opt.tmp_dir)
rmtree(opt.avi_dir)
rmtree(opt.frames_dir)
copytree(opt.crop_dir, sd_dest_folder)
copytree(opt.work_dir, work_dest_folder)
if __name__ == "__main__":
file = opt.data_root
os.makedirs(opt.sd_root, exist_ok=True)
os.makedirs(opt.work_root, exist_ok=True)
setattr(opt, 'avi_dir', os.path.join(opt.data_dir, 'pyavi'))
setattr(opt, 'tmp_dir', os.path.join(opt.data_dir, 'pytmp'))
setattr(opt, 'work_dir', os.path.join(opt.data_dir, 'pywork'))
setattr(opt, 'crop_dir', os.path.join(opt.data_dir, 'pycrop'))
setattr(opt, 'frames_dir', os.path.join(opt.data_dir, 'pyframes'))
process_video(file)
|