Spaces:
Running
on
Zero
Running
on
Zero
sindhuhegde
commited on
Commit
•
3860ffa
1
Parent(s):
43bd4b0
Update app
Browse files- .gitignore +2 -0
- app.py +518 -79
- app_v1.py +954 -0
- preprocess/inference_preprocess.py +326 -0
- yolov9c.pt +0 -3
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*__pycache__*
|
2 |
+
*yolov9c.pt*
|
app.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
from shutil import rmtree
|
5 |
-
|
|
|
6 |
import numpy as np
|
|
|
7 |
import cv2
|
|
|
8 |
import librosa
|
9 |
-
import
|
10 |
-
|
11 |
from utils.audio_utils import *
|
12 |
from utils.inference_utils import *
|
13 |
from sync_models.gestsync_models import *
|
14 |
-
|
15 |
-
import sys
|
16 |
-
if sys.version_info > (3, 0): long, unicode, basestring = int, str, str
|
17 |
-
|
18 |
from tqdm import tqdm
|
19 |
-
from
|
20 |
import mediapipe as mp
|
21 |
from protobuf_to_dict import protobuf_to_dict
|
22 |
-
mp_holistic = mp.solutions.holistic
|
23 |
-
from ultralytics import YOLO
|
24 |
-
from decord import VideoReader, cpu
|
25 |
-
|
26 |
import warnings
|
27 |
-
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
28 |
-
warnings.filterwarnings("ignore", category=UserWarning)
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
# Initialize global variables
|
|
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
use_cuda = torch.cuda.is_available()
|
|
|
|
|
36 |
n_negative_samples = 100
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
|
40 |
|
@@ -641,24 +641,216 @@ def sync_correct_video(video_path, frames, wav_file, offset, result_folder, samp
|
|
641 |
|
642 |
return video_output
|
643 |
|
644 |
-
class Logger:
|
645 |
-
def __init__(self, filename):
|
646 |
-
self.terminal = sys.stdout
|
647 |
-
self.log = open(filename, "w")
|
648 |
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
657 |
-
|
658 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
659 |
|
660 |
|
661 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
try:
|
663 |
# Extract the video filename
|
664 |
video_fname = os.path.basename(video_path.split(".")[0])
|
@@ -794,18 +986,184 @@ def process_video(video_path, num_avg_frames, apply_preprocess):
|
|
794 |
except Exception as e:
|
795 |
return f"Error: {str(e)}", None
|
796 |
|
797 |
-
def
|
798 |
-
|
799 |
-
|
800 |
-
|
|
|
|
|
|
|
|
|
|
|
801 |
|
|
|
|
|
802 |
|
803 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
-
sys.stdout = Logger("output.log")
|
806 |
|
|
|
807 |
|
808 |
-
|
|
|
809 |
custom_css = """
|
810 |
<style>
|
811 |
body {
|
@@ -855,6 +1213,7 @@ if __name__ == "__main__":
|
|
855 |
.examples-holder {
|
856 |
margin-top: 2em;
|
857 |
}
|
|
|
858 |
/* Set fixed size for example videos */
|
859 |
.gradio-container .gradio-examples .gr-sample {
|
860 |
width: 240px !important;
|
@@ -888,67 +1247,147 @@ if __name__ == "__main__":
|
|
888 |
custom_html = custom_css + """
|
889 |
<div class="header">
|
890 |
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
|
891 |
-
<h2>
|
892 |
<p>Sindhu Hegde and Andrew Zisserman</p>
|
893 |
<p>VGG, University of Oxford</p>
|
894 |
</div>
|
895 |
"""
|
896 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
897 |
# Define paths to sample videos
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
903 |
# Define Gradio interface
|
904 |
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
|
905 |
gr.HTML(custom_html)
|
|
|
|
|
|
|
|
|
906 |
with gr.Row():
|
907 |
with gr.Column():
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
with gr.Column():
|
920 |
-
result_text = gr.Textbox(label="Result")
|
921 |
-
output_video = gr.Video(label="
|
922 |
|
923 |
with gr.Row():
|
924 |
-
submit_button = gr.Button("Submit", variant="primary")
|
925 |
-
clear_button = gr.Button("Clear")
|
926 |
-
|
927 |
-
submit_button.click(
|
928 |
-
fn=process_video,
|
929 |
-
inputs=[video_input, num_avg_frames, apply_preprocess],
|
930 |
-
outputs=[result_text, output_video]
|
931 |
-
)
|
932 |
-
|
933 |
-
clear_button.click(
|
934 |
-
fn=lambda: (None, 75, False, "", None),
|
935 |
-
inputs=[],
|
936 |
-
outputs=[video_input, num_avg_frames, result_text, output_video]
|
937 |
-
)
|
938 |
|
|
|
939 |
gr.HTML('<div class="examples-holder"></div>')
|
940 |
|
941 |
-
# Add examples
|
942 |
-
gr.Examples(
|
943 |
-
examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
944 |
inputs=video_input,
|
945 |
outputs=None,
|
946 |
fn=None,
|
947 |
cache_examples=False,
|
|
|
948 |
)
|
949 |
|
950 |
-
logs = gr.Textbox(label="Logs")
|
951 |
-
demo.load(read_logs, None, logs, every=1)
|
952 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
953 |
# Launch the interface
|
954 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
from shutil import rmtree
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
import numpy as np
|
8 |
+
import subprocess
|
9 |
import cv2
|
10 |
+
import pickle
|
11 |
import librosa
|
12 |
+
from decord import VideoReader
|
13 |
+
from decord import cpu, gpu
|
14 |
from utils.audio_utils import *
|
15 |
from utils.inference_utils import *
|
16 |
from sync_models.gestsync_models import *
|
|
|
|
|
|
|
|
|
17 |
from tqdm import tqdm
|
18 |
+
from glob import glob
|
19 |
import mediapipe as mp
|
20 |
from protobuf_to_dict import protobuf_to_dict
|
|
|
|
|
|
|
|
|
21 |
import warnings
|
|
|
|
|
22 |
|
23 |
+
mp_holistic = mp.solutions.holistic
|
24 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
25 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
26 |
|
27 |
# Initialize global variables
|
28 |
+
CHECKPOINT_PATH = "model_rgb.pth"
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
use_cuda = torch.cuda.is_available()
|
31 |
+
batch_size = 12
|
32 |
+
fps = 25
|
33 |
n_negative_samples = 100
|
34 |
+
|
35 |
+
# Initialize the mediapipe holistic keypoint detection model
|
36 |
+
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
37 |
+
|
38 |
|
39 |
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
|
40 |
|
|
|
641 |
|
642 |
return video_output
|
643 |
|
|
|
|
|
|
|
|
|
644 |
|
645 |
+
def load_masked_input_frames(test_videos, spec, wav_file, scene_num, result_folder):
|
646 |
+
|
647 |
+
'''
|
648 |
+
This function loads the masked input frames from the video
|
649 |
+
|
650 |
+
Args:
|
651 |
+
- test_videos (list) : List of videos to be processed (speaker-specific tracks)
|
652 |
+
- spec (array) : Spectrogram of the audio
|
653 |
+
- wav_file (string) : Path of the audio file
|
654 |
+
- scene_num (int) : Scene number to be used to save the input masked video
|
655 |
+
- result_folder (string) : Path of the folder to save the input masked video
|
656 |
+
Returns:
|
657 |
+
- all_frames (list) : List of masked input frames window to be used as input to the model
|
658 |
+
- all_orig_frames (list) : List of original masked input frames
|
659 |
+
'''
|
660 |
+
|
661 |
+
all_frames, all_orig_frames = [], []
|
662 |
+
for video_num, video in enumerate(test_videos):
|
663 |
+
|
664 |
+
# Load the video frames
|
665 |
+
frames, status = load_video_frames(video)
|
666 |
+
if status != "success":
|
667 |
+
return None, None, status
|
668 |
+
|
669 |
+
# Extract the keypoints from the frames
|
670 |
+
kp_dict, status = get_keypoints(frames)
|
671 |
+
if status != "success":
|
672 |
+
return None, None, status
|
673 |
+
|
674 |
+
# Mask the frames using the keypoints extracted from the frames and prepare the input to the model
|
675 |
+
masked_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict)
|
676 |
+
if status != "success":
|
677 |
+
return None, None, status
|
678 |
+
|
679 |
+
input_masked_vid_path = os.path.join(result_folder, "input_masked_scene_{}_speaker_{}".format(scene_num, video_num))
|
680 |
+
generate_video(orig_masked_frames, wav_file, input_masked_vid_path)
|
681 |
+
|
682 |
+
# Check if the length of the input frames is equal to the length of the spectrogram
|
683 |
+
if spec.shape[2]!=masked_frames.shape[0]:
|
684 |
+
num_frames = spec.shape[2]
|
685 |
+
masked_frames = masked_frames[:num_frames]
|
686 |
+
orig_masked_frames = orig_masked_frames[:num_frames]
|
687 |
+
frame_diff = np.abs(spec.shape[2] - num_frames)
|
688 |
+
if frame_diff > 60:
|
689 |
+
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
|
690 |
+
|
691 |
+
# Transpose the frames to the correct format
|
692 |
+
frames = np.transpose(masked_frames, (4, 0, 1, 2, 3))
|
693 |
+
frames = torch.FloatTensor(np.array(frames)).unsqueeze(0)
|
694 |
+
|
695 |
+
all_frames.append(frames)
|
696 |
+
all_orig_frames.append(orig_masked_frames)
|
697 |
+
|
698 |
+
|
699 |
+
return all_frames, all_orig_frames, "success"
|
700 |
+
|
701 |
+
def extract_audio(video, result_folder):
|
702 |
+
|
703 |
+
'''
|
704 |
+
This function extracts the audio from the video file
|
705 |
+
|
706 |
+
Args:
|
707 |
+
- video (string) : Path of the video file
|
708 |
+
- result_folder (string) : Path of the folder to save the extracted audio file
|
709 |
+
Returns:
|
710 |
+
- wav_file (string) : Path of the extracted audio file
|
711 |
+
'''
|
712 |
+
|
713 |
+
wav_file = os.path.join(result_folder, "audio.wav")
|
714 |
+
|
715 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -threads 1 -y -i %s -async 1 -ac 1 -vn \
|
716 |
+
-acodec pcm_s16le -ar 16000 %s' % (video, wav_file), shell=True)
|
717 |
+
|
718 |
+
if status != 0:
|
719 |
+
msg = "Oops! Could not load the audio file in the given input video. Please check the input and try again"
|
720 |
+
return None, msg
|
721 |
+
|
722 |
+
return wav_file, "success"
|
723 |
+
|
724 |
+
|
725 |
+
def get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=True):
|
726 |
+
|
727 |
+
'''
|
728 |
+
This function extracts the video and audio embeddings from the input frames and audio sequences
|
729 |
+
|
730 |
+
Args:
|
731 |
+
- video_sequences (array) : Array of video frames to be used as input to the model
|
732 |
+
- audio_sequences (array) : Array of audio frames to be used as input to the model
|
733 |
+
- model (object) : Model object
|
734 |
+
- calc_aud_emb (bool) : Flag to calculate the audio embedding
|
735 |
+
Returns:
|
736 |
+
- video_emb (array) : Video embedding
|
737 |
+
- audio_emb (array) : Audio embedding
|
738 |
+
'''
|
739 |
+
|
740 |
+
batch_size = 12
|
741 |
+
video_emb = []
|
742 |
+
audio_emb = []
|
743 |
+
|
744 |
+
for i in range(0, len(video_sequences), batch_size):
|
745 |
+
video_inp = video_sequences[i:i+batch_size, ]
|
746 |
+
vid_emb = model.forward_vid(video_inp.to(device), return_feats=False)
|
747 |
+
vid_emb = torch.mean(vid_emb, axis=-1)
|
748 |
+
|
749 |
+
video_emb.append(vid_emb.detach())
|
750 |
+
|
751 |
+
if calc_aud_emb:
|
752 |
+
audio_inp = audio_sequences[i:i+batch_size, ]
|
753 |
+
aud_emb = model.forward_aud(audio_inp.to(device))
|
754 |
+
audio_emb.append(aud_emb.detach())
|
755 |
|
756 |
+
torch.cuda.empty_cache()
|
757 |
+
|
758 |
+
video_emb = torch.cat(video_emb, dim=0)
|
759 |
+
|
760 |
+
if calc_aud_emb:
|
761 |
+
audio_emb = torch.cat(audio_emb, dim=0)
|
762 |
+
|
763 |
+
return video_emb, audio_emb
|
764 |
+
|
765 |
+
return video_emb
|
766 |
+
|
767 |
|
768 |
|
769 |
+
def predict_active_speaker(all_video_embeddings, audio_embedding, global_score, num_avg_frames, model):
|
770 |
+
|
771 |
+
'''
|
772 |
+
This function predicts the active speaker in each frame
|
773 |
+
|
774 |
+
Args:
|
775 |
+
- all_video_embeddings (array) : Array of video embeddings of all speakers
|
776 |
+
- audio_embedding (array) : Audio embedding
|
777 |
+
- global_score (bool) : Flag to calculate the global score
|
778 |
+
Returns:
|
779 |
+
- pred_speaker (list) : List of active speakers in each frame
|
780 |
+
'''
|
781 |
+
|
782 |
+
cos = nn.CosineSimilarity(dim=1)
|
783 |
+
|
784 |
+
audio_embedding = audio_embedding.squeeze(2)
|
785 |
+
|
786 |
+
scores = []
|
787 |
+
for i in range(len(all_video_embeddings)):
|
788 |
+
video_embedding = all_video_embeddings[i]
|
789 |
+
|
790 |
+
# Compute the similarity of each speaker's video embeddings with the audio embedding
|
791 |
+
sim = cos(video_embedding, audio_embedding)
|
792 |
+
|
793 |
+
# Apply the logits scale to the similarity scores (scaling the scores)
|
794 |
+
output = model.logits_scale(sim.unsqueeze(-1)).squeeze(-1)
|
795 |
+
|
796 |
+
if global_score=="True":
|
797 |
+
score = output.mean(0)
|
798 |
+
else:
|
799 |
+
output_batch = output.unfold(0, num_avg_frames, 1)
|
800 |
+
score = torch.mean(output_batch, axis=-1)
|
801 |
+
|
802 |
+
scores.append(score.detach().cpu().numpy())
|
803 |
+
|
804 |
+
if global_score=="True":
|
805 |
+
print("Using global predictions")
|
806 |
+
pred_speaker = np.argmax(scores)
|
807 |
+
else:
|
808 |
+
print("Using per-frame predictions")
|
809 |
+
pred_speaker = []
|
810 |
+
num_negs = list(range(0, len(all_video_embeddings)))
|
811 |
+
for frame_idx in range(len(scores[0])):
|
812 |
+
score = [scores[i][frame_idx] for i in num_negs]
|
813 |
+
pred_idx = np.argmax(score)
|
814 |
+
pred_speaker.append(pred_idx)
|
815 |
+
|
816 |
+
return pred_speaker
|
817 |
+
|
818 |
+
|
819 |
+
def save_video(output_tracks, input_frames, wav_file, result_folder):
|
820 |
+
|
821 |
+
'''
|
822 |
+
This function saves the output video with the active speaker detections
|
823 |
+
|
824 |
+
Args:
|
825 |
+
- output_tracks (list) : List of active speakers in each frame
|
826 |
+
- input_frames (array) : Frames to be used to generate the video
|
827 |
+
- wav_file (string) : Path of the audio file
|
828 |
+
- result_folder (string) : Path of the result folder to save the output video
|
829 |
+
Returns:
|
830 |
+
- video_output (string) : Path of the output video
|
831 |
+
'''
|
832 |
+
|
833 |
+
output_frames = []
|
834 |
+
for i in range(len(input_frames)):
|
835 |
+
|
836 |
+
# If the active speaker is found, draw a bounding box around the active speaker
|
837 |
+
if i in output_tracks:
|
838 |
+
bbox = output_tracks[i]
|
839 |
+
x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
|
840 |
+
out = cv2.rectangle(input_frames[i].copy(), (x1, y1), (x2, y2), color=[0, 255, 0], thickness=3)
|
841 |
+
else:
|
842 |
+
out = input_frames[i]
|
843 |
+
|
844 |
+
output_frames.append(out)
|
845 |
+
|
846 |
+
# Generate the output video
|
847 |
+
output_video_fname = os.path.join(result_folder, "result_active_speaker_det")
|
848 |
+
video_output = generate_video(output_frames, wav_file, output_video_fname)
|
849 |
+
|
850 |
+
return video_output
|
851 |
+
|
852 |
+
def process_video_syncoffset(video_path, num_avg_frames, apply_preprocess):
|
853 |
+
|
854 |
try:
|
855 |
# Extract the video filename
|
856 |
video_fname = os.path.basename(video_path.split(".")[0])
|
|
|
986 |
except Exception as e:
|
987 |
return f"Error: {str(e)}", None
|
988 |
|
989 |
+
def process_video_activespeaker(video_path, global_speaker, num_avg_frames):
|
990 |
+
try:
|
991 |
+
# Extract the video filename
|
992 |
+
video_fname = os.path.basename(video_path.split(".")[0])
|
993 |
+
|
994 |
+
# Create folders to save the inputs and results
|
995 |
+
result_folder = os.path.join("results", video_fname)
|
996 |
+
result_folder_input = os.path.join(result_folder, "input")
|
997 |
+
result_folder_output = os.path.join(result_folder, "output")
|
998 |
|
999 |
+
if os.path.exists(result_folder):
|
1000 |
+
rmtree(result_folder)
|
1001 |
|
1002 |
+
os.makedirs(result_folder)
|
1003 |
+
os.makedirs(result_folder_input)
|
1004 |
+
os.makedirs(result_folder_output)
|
1005 |
+
|
1006 |
+
if global_speaker=="per-frame-prediction" and num_avg_frames<25:
|
1007 |
+
msg = "Number of frames to average need to be set to a minimum of 25 frames. Atleast 1-second context is needed for the model. Please change the num_avg_frames and try again..."
|
1008 |
+
return None, msg
|
1009 |
+
|
1010 |
+
# Read the video
|
1011 |
+
try:
|
1012 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
1013 |
+
except:
|
1014 |
+
msg = "Oops! Could not load the input video file"
|
1015 |
+
return None, msg
|
1016 |
+
|
1017 |
+
# Get the FPS of the video
|
1018 |
+
fps = vr.get_avg_fps()
|
1019 |
+
print("FPS of video: ", fps)
|
1020 |
+
|
1021 |
+
# Resample the video to 25 FPS if the original video is of a different frame-rate
|
1022 |
+
if fps!=25:
|
1023 |
+
test_video_25fps = resample_video(video_path, video_fname, result_folder_input)
|
1024 |
+
else:
|
1025 |
+
test_video_25fps = video_path
|
1026 |
+
|
1027 |
+
# Load the video frames
|
1028 |
+
orig_frames, status = load_video_frames(test_video_25fps)
|
1029 |
+
if status != "success":
|
1030 |
+
return None, status
|
1031 |
+
|
1032 |
+
# Extract and save the audio file
|
1033 |
+
orig_wav_file, status = extract_audio(video_path, result_folder)
|
1034 |
+
if status != "success":
|
1035 |
+
return None, status
|
1036 |
+
|
1037 |
+
# Pre-process and extract per-speaker tracks in each scene
|
1038 |
+
print("Pre-processing the input video...")
|
1039 |
+
status = subprocess.call("python preprocess/inference_preprocess.py --data_dir={}/temp --sd_root={}/crops --work_root={}/metadata --data_root={}".format(result_folder_input, result_folder_input, result_folder_input, video_path), shell=True)
|
1040 |
+
if status != 0:
|
1041 |
+
return None, "Error in pre-processing the input video, please check the input video and try again..."
|
1042 |
+
|
1043 |
+
# Load the tracks file saved during pre-processing
|
1044 |
+
with open('{}/metadata/tracks.pckl'.format(result_folder_input), 'rb') as file:
|
1045 |
+
tracks = pickle.load(file)
|
1046 |
+
|
1047 |
+
|
1048 |
+
# Create a dictionary of all tracks found along with the bounding-boxes
|
1049 |
+
track_dict = {}
|
1050 |
+
for scene_num in range(len(tracks)):
|
1051 |
+
track_dict[scene_num] = {}
|
1052 |
+
for i in range(len(tracks[scene_num])):
|
1053 |
+
track_dict[scene_num][i] = {}
|
1054 |
+
for frame_num, bbox in zip(tracks[scene_num][i]['track']['frame'], tracks[scene_num][i]['track']['bbox']):
|
1055 |
+
track_dict[scene_num][i][frame_num] = bbox
|
1056 |
+
|
1057 |
+
# Get the total number of scenes
|
1058 |
+
test_scenes = os.listdir("{}/crops".format(result_folder_input))
|
1059 |
+
print("Total scenes found in the input video = ", len(test_scenes))
|
1060 |
+
|
1061 |
+
# Load the trained model
|
1062 |
+
model = Transformer_RGB()
|
1063 |
+
model = load_checkpoint(CHECKPOINT_PATH, model)
|
1064 |
+
|
1065 |
+
# Compute the active speaker in each scene
|
1066 |
+
output_tracks = {}
|
1067 |
+
for scene_num in tqdm(range(len(test_scenes))):
|
1068 |
+
test_videos = glob(os.path.join("{}/crops".format(result_folder_input), "scene_{}".format(str(scene_num)), "*.avi"))
|
1069 |
+
test_videos.sort(key=lambda x: int(os.path.basename(x).split('.')[0]))
|
1070 |
+
print("Scene {} -> Total video files found (speaker-specific tracks) = {}".format(scene_num, len(test_videos)))
|
1071 |
+
|
1072 |
+
if len(test_videos)<=1:
|
1073 |
+
msg = "To detect the active speaker, at least 2 visible speakers are required for each scene! Please check the input video and try again..."
|
1074 |
+
return None, msg
|
1075 |
+
|
1076 |
+
# Load the audio file
|
1077 |
+
audio_file = glob(os.path.join("{}/crops".format(result_folder_input), "scene_{}".format(str(scene_num)), "*.wav"))[0]
|
1078 |
+
spec, _, status = load_spectrograms(audio_file, window_frames=25)
|
1079 |
+
if status != "success":
|
1080 |
+
return None, status
|
1081 |
+
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0,1,2,4,3)
|
1082 |
+
|
1083 |
+
# Load the masked input frames
|
1084 |
+
all_masked_frames, all_orig_masked_frames, status = load_masked_input_frames(test_videos, spec, audio_file, scene_num, result_folder_input)
|
1085 |
+
if status != "success":
|
1086 |
+
return None, status
|
1087 |
+
|
1088 |
+
|
1089 |
+
# Prepare the audio and video sequences for the model
|
1090 |
+
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
|
1091 |
+
|
1092 |
+
print("Obtaining audio and video embeddings...")
|
1093 |
+
all_video_embs = []
|
1094 |
+
for idx in tqdm(range(len(all_masked_frames))):
|
1095 |
+
with torch.no_grad():
|
1096 |
+
video_sequences = torch.cat([all_masked_frames[idx][:, :, i] for i in range(all_masked_frames[idx].size(2))], dim=0)
|
1097 |
+
|
1098 |
+
if idx==0:
|
1099 |
+
video_emb, audio_emb = get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=True)
|
1100 |
+
else:
|
1101 |
+
video_emb = get_embeddings(video_sequences, audio_sequences, model, calc_aud_emb=False)
|
1102 |
+
all_video_embs.append(video_emb)
|
1103 |
+
|
1104 |
+
# Predict the active speaker in each scene
|
1105 |
+
if global_speaker=="per-frame-prediction":
|
1106 |
+
predictions = predict_active_speaker(all_video_embs, audio_emb, "False", num_avg_frames, model)
|
1107 |
+
else:
|
1108 |
+
predictions = predict_active_speaker(all_video_embs, audio_emb, "True", num_avg_frames, model)
|
1109 |
+
|
1110 |
+
# Get the frames present in the scene
|
1111 |
+
frames_scene = tracks[scene_num][0]['track']['frame']
|
1112 |
+
|
1113 |
+
# Prepare the active speakers list to draw the bounding boxes
|
1114 |
+
if global_speaker=="global-prediction":
|
1115 |
+
print("Aggregating scores using global predictoins")
|
1116 |
+
active_speakers = [predictions]*len(frames_scene)
|
1117 |
+
start, end = 0, len(frames_scene)
|
1118 |
+
else:
|
1119 |
+
print("Aggregating scores using per-frame predictions")
|
1120 |
+
active_speakers = [0]*len(frames_scene)
|
1121 |
+
mid = num_avg_frames//2
|
1122 |
+
|
1123 |
+
if num_avg_frames%2==0:
|
1124 |
+
frame_pred = len(frames_scene)-(mid*2)+1
|
1125 |
+
start, end = mid, len(frames_scene)-mid+1
|
1126 |
+
else:
|
1127 |
+
frame_pred = len(frames_scene)-(mid*2)
|
1128 |
+
start, end = mid, len(frames_scene)-mid
|
1129 |
+
|
1130 |
+
if len(predictions) != frame_pred:
|
1131 |
+
msg = "Predicted frames {} and input video frames {} do not match!!".format(len(predictions), frame_pred)
|
1132 |
+
return None, msg
|
1133 |
+
|
1134 |
+
active_speakers[start:end] = predictions[0:]
|
1135 |
+
|
1136 |
+
# Depending on the num_avg_frames, interpolate the intial and final frame predictions to get a full video output
|
1137 |
+
initial_preds = max(set(predictions[:num_avg_frames]), key=predictions[:num_avg_frames].count)
|
1138 |
+
active_speakers[0:start] = [initial_preds] * start
|
1139 |
+
|
1140 |
+
final_preds = max(set(predictions[-num_avg_frames:]), key=predictions[-num_avg_frames:].count)
|
1141 |
+
active_speakers[end:] = [final_preds] * (len(frames_scene) - end)
|
1142 |
+
start, end = 0, len(active_speakers)
|
1143 |
+
|
1144 |
+
# Get the output tracks for each frame
|
1145 |
+
pred_idx = 0
|
1146 |
+
for frame in frames_scene[start:end]:
|
1147 |
+
label = active_speakers[pred_idx]
|
1148 |
+
pred_idx += 1
|
1149 |
+
output_tracks[frame] = track_dict[scene_num][label][frame]
|
1150 |
+
|
1151 |
+
# Save the output video
|
1152 |
+
video_output, status = save_video(output_tracks, orig_frames.copy(), orig_wav_file, result_folder_output)
|
1153 |
+
if status != "success":
|
1154 |
+
return None, status
|
1155 |
+
print("Successfully saved the output video: ", video_output)
|
1156 |
+
|
1157 |
+
return video_output, "success"
|
1158 |
+
|
1159 |
+
except Exception as e:
|
1160 |
+
return None, f"Error: {str(e)}"
|
1161 |
|
|
|
1162 |
|
1163 |
+
if __name__ == "__main__":
|
1164 |
|
1165 |
+
|
1166 |
+
# Custom CSS and HTML
|
1167 |
custom_css = """
|
1168 |
<style>
|
1169 |
body {
|
|
|
1213 |
.examples-holder {
|
1214 |
margin-top: 2em;
|
1215 |
}
|
1216 |
+
|
1217 |
/* Set fixed size for example videos */
|
1218 |
.gradio-container .gradio-examples .gr-sample {
|
1219 |
width: 240px !important;
|
|
|
1247 |
custom_html = custom_css + """
|
1248 |
<div class="header">
|
1249 |
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
|
1250 |
+
<h2>Synchronization and Active Speaker Detection Demo</h2>
|
1251 |
<p>Sindhu Hegde and Andrew Zisserman</p>
|
1252 |
<p>VGG, University of Oxford</p>
|
1253 |
</div>
|
1254 |
"""
|
1255 |
|
1256 |
+
# Define functions
|
1257 |
+
def toggle_slider(global_speaker):
|
1258 |
+
if global_speaker == "per-frame-prediction":
|
1259 |
+
return gr.update(visible=True)
|
1260 |
+
else:
|
1261 |
+
return gr.update(visible=False)
|
1262 |
+
|
1263 |
+
def toggle_demo(demo_choice):
|
1264 |
+
if demo_choice == "Synchronization-correction":
|
1265 |
+
return (
|
1266 |
+
gr.update(value=None, visible=True), # video_input
|
1267 |
+
gr.update(value=75, visible=True), # num_avg_frames
|
1268 |
+
gr.update(value=None, visible=True), # apply_preprocess
|
1269 |
+
gr.update(value="global-prediction", visible=False), # global_speaker
|
1270 |
+
gr.update(value="", visible=True), # result_text
|
1271 |
+
gr.update(value=None, visible=True), # output_video
|
1272 |
+
gr.update(visible=True), # submit_button
|
1273 |
+
gr.update(visible=True), # clear_button
|
1274 |
+
gr.update(visible=True), # sync_examples
|
1275 |
+
gr.update(visible=False) # asd_examples
|
1276 |
+
)
|
1277 |
+
else:
|
1278 |
+
return (
|
1279 |
+
gr.update(value=None, visible=True), # video_input
|
1280 |
+
gr.update(value=75, visible=True), # num_avg_frames
|
1281 |
+
gr.update(value=None, visible=False), # apply_preprocess
|
1282 |
+
gr.update(value="global-prediction", visible=True), # global_speaker
|
1283 |
+
gr.update(value="", visible=True), # result_text
|
1284 |
+
gr.update(value=None, visible=True), # output_video
|
1285 |
+
gr.update(visible=True), # submit_button
|
1286 |
+
gr.update(visible=True), # clear_button
|
1287 |
+
gr.update(visible=False), # sync_examples
|
1288 |
+
gr.update(visible=True) # asd_examples
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
def clear_inputs():
|
1292 |
+
return None, None, "global-prediction", 75, None, "", None
|
1293 |
+
|
1294 |
+
def process_video(video_input, demo_choice, global_speaker, num_avg_frames, apply_preprocess):
|
1295 |
+
if demo_choice == "Synchronization-correction":
|
1296 |
+
return process_video_syncoffset(video_input, num_avg_frames, apply_preprocess)
|
1297 |
+
else:
|
1298 |
+
return process_video_activespeaker(video_input, global_speaker, num_avg_frames)
|
1299 |
+
|
1300 |
+
|
1301 |
# Define paths to sample videos
|
1302 |
+
sync_sample_videos = [
|
1303 |
+
"samples/sync_sample_1.mp4",
|
1304 |
+
"samples/sync_sample_2.mp4",
|
1305 |
+
"samples/sync_sample_3.mp4"
|
1306 |
+
]
|
1307 |
+
|
1308 |
+
asd_sample_videos = [
|
1309 |
+
"samples/asd_sample_1.mp4",
|
1310 |
+
"samples/asd_sample_2.mp4"
|
1311 |
+
]
|
1312 |
+
|
1313 |
# Define Gradio interface
|
1314 |
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
|
1315 |
gr.HTML(custom_html)
|
1316 |
+
demo_choice = gr.Radio(
|
1317 |
+
choices=["Synchronization-correction", "Active-speaker-detection"],
|
1318 |
+
label="Please select the task you want to perform"
|
1319 |
+
)
|
1320 |
with gr.Row():
|
1321 |
with gr.Column():
|
1322 |
+
video_input = gr.Video(label="Upload Video", height=400, visible=False)
|
1323 |
+
num_avg_frames = gr.Slider(
|
1324 |
+
minimum=50,
|
1325 |
+
maximum=150,
|
1326 |
+
step=5,
|
1327 |
+
value=75,
|
1328 |
+
label="Number of Average Frames",
|
1329 |
+
visible=False
|
1330 |
+
)
|
1331 |
+
apply_preprocess = gr.Checkbox(label="Apply Preprocessing", value=False, visible=False)
|
1332 |
+
global_speaker = gr.Radio(
|
1333 |
+
choices=["global-prediction", "per-frame-prediction"],
|
1334 |
+
value="global-prediction",
|
1335 |
+
label="Global Speaker Prediction",
|
1336 |
+
visible=False
|
1337 |
+
)
|
1338 |
+
global_speaker.change(
|
1339 |
+
fn=toggle_slider,
|
1340 |
+
inputs=global_speaker,
|
1341 |
+
outputs=num_avg_frames
|
1342 |
+
)
|
1343 |
with gr.Column():
|
1344 |
+
result_text = gr.Textbox(label="Result", visible=False)
|
1345 |
+
output_video = gr.Video(label="Output Video", height=400, visible=False)
|
1346 |
|
1347 |
with gr.Row():
|
1348 |
+
submit_button = gr.Button("Submit", variant="primary", visible=False)
|
1349 |
+
clear_button = gr.Button("Clear", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1350 |
|
1351 |
+
# Add a gap before examples
|
1352 |
gr.HTML('<div class="examples-holder"></div>')
|
1353 |
|
1354 |
+
# Add examples that only populate the video input
|
1355 |
+
sync_examples = gr.Examples(
|
1356 |
+
examples=sync_sample_videos,
|
1357 |
+
inputs=video_input,
|
1358 |
+
outputs=None,
|
1359 |
+
fn=None,
|
1360 |
+
cache_examples=False,
|
1361 |
+
visible=False
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
asd_examples = gr.Examples(
|
1365 |
+
examples=asd_sample_videos,
|
1366 |
inputs=video_input,
|
1367 |
outputs=None,
|
1368 |
fn=None,
|
1369 |
cache_examples=False,
|
1370 |
+
visible=False
|
1371 |
)
|
1372 |
|
|
|
|
|
1373 |
|
1374 |
+
demo_choice.change(
|
1375 |
+
fn=toggle_demo,
|
1376 |
+
inputs=demo_choice,
|
1377 |
+
outputs=[video_input, num_avg_frames, apply_preprocess, global_speaker, result_text, output_video, submit_button, clear_button, sync_examples.dataset, asd_examples.dataset]
|
1378 |
+
)
|
1379 |
+
|
1380 |
+
|
1381 |
+
submit_button.click(
|
1382 |
+
fn=process_video,
|
1383 |
+
inputs=[video_input, demo_choice, global_speaker, num_avg_frames, apply_preprocess],
|
1384 |
+
outputs=[result_text, output_video]
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
clear_button.click(
|
1388 |
+
fn=clear_inputs,
|
1389 |
+
inputs=[],
|
1390 |
+
outputs=[demo_choice, video_input, global_speaker, num_avg_frames, apply_preprocess, result_text, output_video]
|
1391 |
+
)
|
1392 |
# Launch the interface
|
1393 |
+
demo.launch(allowed_paths=["."], server_name="0.0.0.0", server_port=7860, share=True)
|
app_v1.py
ADDED
@@ -0,0 +1,954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import os, subprocess
|
4 |
+
from shutil import rmtree
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import librosa
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from utils.audio_utils import *
|
12 |
+
from utils.inference_utils import *
|
13 |
+
from sync_models.gestsync_models import *
|
14 |
+
|
15 |
+
import sys
|
16 |
+
if sys.version_info > (3, 0): long, unicode, basestring = int, str, str
|
17 |
+
|
18 |
+
from tqdm import tqdm
|
19 |
+
from scipy.io.wavfile import write
|
20 |
+
import mediapipe as mp
|
21 |
+
from protobuf_to_dict import protobuf_to_dict
|
22 |
+
mp_holistic = mp.solutions.holistic
|
23 |
+
from ultralytics import YOLO
|
24 |
+
from decord import VideoReader, cpu
|
25 |
+
|
26 |
+
import warnings
|
27 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
28 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
29 |
+
|
30 |
+
# Set the path to checkpoint file
|
31 |
+
CHECKPOINT_PATH = "model_rgb.pth"
|
32 |
+
|
33 |
+
# Initialize global variables
|
34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
+
use_cuda = torch.cuda.is_available()
|
36 |
+
n_negative_samples = 100
|
37 |
+
print("Using CUDA: ", use_cuda, device)
|
38 |
+
|
39 |
+
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
|
40 |
+
|
41 |
+
'''
|
42 |
+
This function preprocesses the input video to extract the audio and crop the frames using YOLO model
|
43 |
+
|
44 |
+
Args:
|
45 |
+
- path (string) : Path of the input video file
|
46 |
+
- result_folder (string) : Path of the folder to save the extracted audio and cropped video
|
47 |
+
- padding (int) : Padding to add to the bounding box
|
48 |
+
Returns:
|
49 |
+
- wav_file (string) : Path of the extracted audio file
|
50 |
+
- fps (int) : FPS of the input video
|
51 |
+
- video_output (string) : Path of the cropped video file
|
52 |
+
- msg (string) : Message to be returned
|
53 |
+
'''
|
54 |
+
|
55 |
+
# Load all video frames
|
56 |
+
try:
|
57 |
+
vr = VideoReader(path, ctx=cpu(0))
|
58 |
+
fps = vr.get_avg_fps()
|
59 |
+
frame_count = len(vr)
|
60 |
+
except:
|
61 |
+
msg = "Oops! Could not load the video. Please check the input video and try again."
|
62 |
+
return None, None, None, msg
|
63 |
+
|
64 |
+
if frame_count < 25:
|
65 |
+
msg = "Not enough frames to process! Please give a longer video as input"
|
66 |
+
return None, None, None, msg
|
67 |
+
|
68 |
+
# Extract the audio from the input video file using ffmpeg
|
69 |
+
wav_file = os.path.join(result_folder, "audio.wav")
|
70 |
+
|
71 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -async 1 -ac 1 -vn \
|
72 |
+
-acodec pcm_s16le -ar 16000 %s -y' % (path, wav_file), shell=True)
|
73 |
+
|
74 |
+
if status != 0:
|
75 |
+
msg = "Oops! Could not load the audio file. Please check the input video and try again."
|
76 |
+
return None, None, None, msg
|
77 |
+
print("Extracted the audio from the video")
|
78 |
+
|
79 |
+
if apply_preprocess=="True":
|
80 |
+
all_frames = []
|
81 |
+
for k in range(len(vr)):
|
82 |
+
all_frames.append(vr[k].asnumpy())
|
83 |
+
all_frames = np.asarray(all_frames)
|
84 |
+
print("Extracted the frames for pre-processing")
|
85 |
+
|
86 |
+
# Load YOLOv9 model (pre-trained on COCO dataset)
|
87 |
+
yolo_model = YOLO("yolov9s.pt")
|
88 |
+
print("Loaded the YOLO model")
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
person_videos = {}
|
93 |
+
person_tracks = {}
|
94 |
+
|
95 |
+
print("Processing the frames...")
|
96 |
+
for frame_idx in tqdm(range(frame_count)):
|
97 |
+
|
98 |
+
frame = all_frames[frame_idx]
|
99 |
+
|
100 |
+
# Perform person detection
|
101 |
+
results = yolo_model(frame, verbose=False)
|
102 |
+
detections = results[0].boxes
|
103 |
+
|
104 |
+
for i, det in enumerate(detections):
|
105 |
+
x1, y1, x2, y2 = det.xyxy[0]
|
106 |
+
cls = det.cls[0]
|
107 |
+
if int(cls) == 0: # Class 0 is 'person' in COCO dataset
|
108 |
+
|
109 |
+
x1 = max(0, int(x1) - padding)
|
110 |
+
y1 = max(0, int(y1) - padding)
|
111 |
+
x2 = min(frame.shape[1], int(x2) + padding)
|
112 |
+
y2 = min(frame.shape[0], int(y2) + padding)
|
113 |
+
|
114 |
+
if i not in person_videos:
|
115 |
+
person_videos[i] = []
|
116 |
+
person_tracks[i] = []
|
117 |
+
|
118 |
+
person_videos[i].append(frame)
|
119 |
+
person_tracks[i].append([x1,y1,x2,y2])
|
120 |
+
|
121 |
+
|
122 |
+
num_persons = 0
|
123 |
+
for i in person_videos.keys():
|
124 |
+
if len(person_videos[i]) >= frame_count//2:
|
125 |
+
num_persons+=1
|
126 |
+
|
127 |
+
if num_persons==0:
|
128 |
+
msg = "No person detected in the video! Please give a video with one person as input"
|
129 |
+
return None, None, None, msg
|
130 |
+
if num_persons>1:
|
131 |
+
msg = "More than one person detected in the video! Please give a video with only one person as input"
|
132 |
+
return None, None, None, msg
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
# For the person detected, crop the frame based on the bounding box
|
137 |
+
if len(person_videos[0]) > frame_count-10:
|
138 |
+
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
|
139 |
+
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
|
140 |
+
|
141 |
+
# Get bounding box coordinates based on person_tracks[i]
|
142 |
+
max_x1 = min([track[0] for track in person_tracks[0]])
|
143 |
+
max_y1 = min([track[1] for track in person_tracks[0]])
|
144 |
+
max_x2 = max([track[2] for track in person_tracks[0]])
|
145 |
+
max_y2 = max([track[3] for track in person_tracks[0]])
|
146 |
+
|
147 |
+
max_width = max_x2 - max_x1
|
148 |
+
max_height = max_y2 - max_y1
|
149 |
+
|
150 |
+
out = cv2.VideoWriter(crop_filename, fourcc, fps, (max_width, max_height))
|
151 |
+
for frame in person_videos[0]:
|
152 |
+
crop = frame[max_y1:max_y2, max_x1:max_x2]
|
153 |
+
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
|
154 |
+
out.write(crop)
|
155 |
+
out.release()
|
156 |
+
|
157 |
+
no_sound_video = crop_filename.split('.')[0] + '_nosound.mp4'
|
158 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (crop_filename, no_sound_video), shell=True)
|
159 |
+
if status != 0:
|
160 |
+
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
|
161 |
+
return None, None, None, msg
|
162 |
+
|
163 |
+
video_output = crop_filename.split('.')[0] + '.mp4'
|
164 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
|
165 |
+
(wav_file , no_sound_video, video_output), shell=True)
|
166 |
+
if status != 0:
|
167 |
+
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
|
168 |
+
return None, None, None, msg
|
169 |
+
|
170 |
+
os.remove(crop_filename)
|
171 |
+
os.remove(no_sound_video)
|
172 |
+
|
173 |
+
print("Successfully saved the pre-processed video: ", video_output)
|
174 |
+
else:
|
175 |
+
msg = "Could not track the person in the full video! Please give a single-speaker video as input"
|
176 |
+
return None, None, None, msg
|
177 |
+
|
178 |
+
else:
|
179 |
+
video_output = path
|
180 |
+
|
181 |
+
return wav_file, fps, video_output, "success"
|
182 |
+
|
183 |
+
def resample_video(video_file, video_fname, result_folder):
|
184 |
+
|
185 |
+
'''
|
186 |
+
This function resamples the video to 25 fps
|
187 |
+
|
188 |
+
Args:
|
189 |
+
- video_file (string) : Path of the input video file
|
190 |
+
- video_fname (string) : Name of the input video file
|
191 |
+
- result_folder (string) : Path of the folder to save the resampled video
|
192 |
+
Returns:
|
193 |
+
- video_file_25fps (string) : Path of the resampled video file
|
194 |
+
'''
|
195 |
+
video_file_25fps = os.path.join(result_folder, '{}.mp4'.format(video_fname))
|
196 |
+
|
197 |
+
# Resample the video to 25 fps
|
198 |
+
command = ("ffmpeg -hide_banner -loglevel panic -y -i {} -q:v 1 -filter:v fps=25 {}".format(video_file, video_file_25fps))
|
199 |
+
from subprocess import call
|
200 |
+
cmd = command.split(' ')
|
201 |
+
print('Resampled the video to 25 fps: {}'.format(video_file_25fps))
|
202 |
+
call(cmd)
|
203 |
+
|
204 |
+
return video_file_25fps
|
205 |
+
|
206 |
+
def load_checkpoint(path, model):
|
207 |
+
'''
|
208 |
+
This function loads the trained model from the checkpoint
|
209 |
+
|
210 |
+
Args:
|
211 |
+
- path (string) : Path of the checkpoint file
|
212 |
+
- model (object) : Model object
|
213 |
+
Returns:
|
214 |
+
- model (object) : Model object with the weights loaded from the checkpoint
|
215 |
+
'''
|
216 |
+
|
217 |
+
# Load the checkpoint
|
218 |
+
if use_cuda:
|
219 |
+
checkpoint = torch.load(path)
|
220 |
+
else:
|
221 |
+
checkpoint = torch.load(path, map_location="cpu")
|
222 |
+
|
223 |
+
s = checkpoint["state_dict"]
|
224 |
+
new_s = {}
|
225 |
+
|
226 |
+
for k, v in s.items():
|
227 |
+
new_s[k.replace('module.', '')] = v
|
228 |
+
model.load_state_dict(new_s)
|
229 |
+
|
230 |
+
if use_cuda:
|
231 |
+
model.cuda()
|
232 |
+
|
233 |
+
print("Loaded checkpoint from: {}".format(path))
|
234 |
+
|
235 |
+
return model.eval()
|
236 |
+
|
237 |
+
|
238 |
+
def load_video_frames(video_file):
|
239 |
+
'''
|
240 |
+
This function extracts the frames from the video
|
241 |
+
|
242 |
+
Args:
|
243 |
+
- video_file (string) : Path of the video file
|
244 |
+
Returns:
|
245 |
+
- frames (list) : List of frames extracted from the video
|
246 |
+
- msg (string) : Message to be returned
|
247 |
+
'''
|
248 |
+
|
249 |
+
# Read the video
|
250 |
+
try:
|
251 |
+
vr = VideoReader(video_file, ctx=cpu(0))
|
252 |
+
except:
|
253 |
+
msg = "Oops! Could not load the input video file"
|
254 |
+
return None, msg
|
255 |
+
|
256 |
+
|
257 |
+
# Extract the frames
|
258 |
+
frames = []
|
259 |
+
for k in range(len(vr)):
|
260 |
+
frames.append(vr[k].asnumpy())
|
261 |
+
|
262 |
+
frames = np.asarray(frames)
|
263 |
+
|
264 |
+
return frames, "success"
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
def get_keypoints(frames):
|
269 |
+
|
270 |
+
'''
|
271 |
+
This function extracts the keypoints from the frames using MediaPipe Holistic pipeline
|
272 |
+
|
273 |
+
Args:
|
274 |
+
- frames (list) : List of frames extracted from the video
|
275 |
+
Returns:
|
276 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
277 |
+
- msg (string) : Message to be returned
|
278 |
+
'''
|
279 |
+
|
280 |
+
try:
|
281 |
+
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
|
282 |
+
|
283 |
+
resolution = frames[0].shape
|
284 |
+
all_frame_kps = []
|
285 |
+
|
286 |
+
for frame in frames:
|
287 |
+
|
288 |
+
results = holistic.process(frame)
|
289 |
+
|
290 |
+
pose, left_hand, right_hand, face = None, None, None, None
|
291 |
+
if results.pose_landmarks is not None:
|
292 |
+
pose = protobuf_to_dict(results.pose_landmarks)['landmark']
|
293 |
+
if results.left_hand_landmarks is not None:
|
294 |
+
left_hand = protobuf_to_dict(results.left_hand_landmarks)['landmark']
|
295 |
+
if results.right_hand_landmarks is not None:
|
296 |
+
right_hand = protobuf_to_dict(results.right_hand_landmarks)['landmark']
|
297 |
+
if results.face_landmarks is not None:
|
298 |
+
face = protobuf_to_dict(results.face_landmarks)['landmark']
|
299 |
+
|
300 |
+
frame_dict = {"pose":pose, "left_hand":left_hand, "right_hand":right_hand, "face":face}
|
301 |
+
|
302 |
+
all_frame_kps.append(frame_dict)
|
303 |
+
|
304 |
+
kp_dict = {"kps":all_frame_kps, "resolution":resolution}
|
305 |
+
except Exception as e:
|
306 |
+
print("Error: ", e)
|
307 |
+
return None, "Error: Could not extract keypoints from the frames"
|
308 |
+
|
309 |
+
return kp_dict, "success"
|
310 |
+
|
311 |
+
|
312 |
+
def check_visible_gestures(kp_dict):
|
313 |
+
|
314 |
+
'''
|
315 |
+
This function checks if the gestures in the video are visible
|
316 |
+
|
317 |
+
Args:
|
318 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
319 |
+
Returns:
|
320 |
+
- msg (string) : Message to be returned
|
321 |
+
'''
|
322 |
+
|
323 |
+
keypoints = kp_dict['kps']
|
324 |
+
keypoints = np.array(keypoints)
|
325 |
+
|
326 |
+
if len(keypoints)<25:
|
327 |
+
msg = "Not enough keypoints to process! Please give a longer video as input"
|
328 |
+
return msg
|
329 |
+
|
330 |
+
pose_count, hand_count = 0, 0
|
331 |
+
for frame_kp_dict in keypoints:
|
332 |
+
|
333 |
+
pose = frame_kp_dict["pose"]
|
334 |
+
left_hand = frame_kp_dict["left_hand"]
|
335 |
+
right_hand = frame_kp_dict["right_hand"]
|
336 |
+
|
337 |
+
if pose is None:
|
338 |
+
pose_count += 1
|
339 |
+
|
340 |
+
if left_hand is None and right_hand is None:
|
341 |
+
hand_count += 1
|
342 |
+
|
343 |
+
|
344 |
+
if hand_count/len(keypoints) > 0.7 or pose_count/len(keypoints) > 0.7:
|
345 |
+
msg = "The gestures in the input video are not visible! Please give a video with visible gestures as input."
|
346 |
+
return msg
|
347 |
+
|
348 |
+
print("Successfully verified the input video - Gestures are visible!")
|
349 |
+
|
350 |
+
return "success"
|
351 |
+
|
352 |
+
def load_rgb_masked_frames(input_frames, kp_dict, stride=1, window_frames=25, width=480, height=270):
|
353 |
+
|
354 |
+
'''
|
355 |
+
This function masks the faces using the keypoints extracted from the frames
|
356 |
+
|
357 |
+
Args:
|
358 |
+
- input_frames (list) : List of frames extracted from the video
|
359 |
+
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
|
360 |
+
- stride (int) : Stride to extract the frames
|
361 |
+
- window_frames (int) : Number of frames in each window that is given as input to the model
|
362 |
+
- width (int) : Width of the frames
|
363 |
+
- height (int) : Height of the frames
|
364 |
+
Returns:
|
365 |
+
- input_frames (array) : Frame window to be given as input to the model
|
366 |
+
- num_frames (int) : Number of frames to extract
|
367 |
+
- orig_masked_frames (array) : Masked frames extracted from the video
|
368 |
+
- msg (string) : Message to be returned
|
369 |
+
'''
|
370 |
+
|
371 |
+
# Face indices to extract the face-coordinates needed for masking
|
372 |
+
face_oval_idx = [10, 21, 54, 58, 67, 93, 103, 109, 127, 132, 136, 148, 149, 150, 152, 162, 172,
|
373 |
+
176, 234, 251, 284, 288, 297, 323, 332, 338, 356, 361, 365, 377, 378, 379, 389, 397, 400, 454]
|
374 |
+
|
375 |
+
|
376 |
+
input_keypoints, resolution = kp_dict['kps'], kp_dict['resolution']
|
377 |
+
print("Input keypoints: ", len(input_keypoints))
|
378 |
+
|
379 |
+
print("Creating masked input frames...")
|
380 |
+
input_frames_masked = []
|
381 |
+
for i, frame_kp_dict in tqdm(enumerate(input_keypoints)):
|
382 |
+
|
383 |
+
img = input_frames[i]
|
384 |
+
face = frame_kp_dict["face"]
|
385 |
+
|
386 |
+
if face is None:
|
387 |
+
img = cv2.resize(img, (width, height))
|
388 |
+
masked_img = cv2.rectangle(img, (0,0), (width,110), (0,0,0), -1)
|
389 |
+
else:
|
390 |
+
face_kps = []
|
391 |
+
for idx in range(len(face)):
|
392 |
+
if idx in face_oval_idx:
|
393 |
+
x, y = int(face[idx]["x"]*resolution[1]), int(face[idx]["y"]*resolution[0])
|
394 |
+
face_kps.append((x,y))
|
395 |
+
|
396 |
+
face_kps = np.array(face_kps)
|
397 |
+
x1, y1 = min(face_kps[:,0]), min(face_kps[:,1])
|
398 |
+
x2, y2 = max(face_kps[:,0]), max(face_kps[:,1])
|
399 |
+
masked_img = cv2.rectangle(img, (0,0), (resolution[1],y2+15), (0,0,0), -1)
|
400 |
+
|
401 |
+
if masked_img.shape[0] != width or masked_img.shape[1] != height:
|
402 |
+
masked_img = cv2.resize(masked_img, (width, height))
|
403 |
+
|
404 |
+
input_frames_masked.append(masked_img)
|
405 |
+
|
406 |
+
orig_masked_frames = np.array(input_frames_masked)
|
407 |
+
input_frames = np.array(input_frames_masked) / 255.
|
408 |
+
print("Input images full: ", input_frames.shape) # num_framesx270x480x3
|
409 |
+
|
410 |
+
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
|
411 |
+
print("Input images window: ", input_frames.shape) # Tx25x270x480x3
|
412 |
+
|
413 |
+
num_frames = input_frames.shape[0]
|
414 |
+
|
415 |
+
if num_frames<10:
|
416 |
+
msg = "Not enough frames to process! Please give a longer video as input."
|
417 |
+
return None, None, None, msg
|
418 |
+
|
419 |
+
return input_frames, num_frames, orig_masked_frames, "success"
|
420 |
+
|
421 |
+
def load_spectrograms(wav_file, num_frames, window_frames=25, stride=4):
|
422 |
+
|
423 |
+
'''
|
424 |
+
This function extracts the spectrogram from the audio file
|
425 |
+
|
426 |
+
Args:
|
427 |
+
- wav_file (string) : Path of the extracted audio file
|
428 |
+
- num_frames (int) : Number of frames to extract
|
429 |
+
- window_frames (int) : Number of frames in each window that is given as input to the model
|
430 |
+
- stride (int) : Stride to extract the audio frames
|
431 |
+
Returns:
|
432 |
+
- spec (array) : Spectrogram array window to be used as input to the model
|
433 |
+
- orig_spec (array) : Spectrogram array extracted from the audio file
|
434 |
+
- msg (string) : Message to be returned
|
435 |
+
'''
|
436 |
+
|
437 |
+
# Extract the audio from the input video file using ffmpeg
|
438 |
+
try:
|
439 |
+
wav = librosa.load(wav_file, sr=16000)[0]
|
440 |
+
except:
|
441 |
+
msg = "Oops! Could extract the spectrograms from the audio file. Please check the input and try again."
|
442 |
+
return None, None, msg
|
443 |
+
|
444 |
+
# Convert to tensor
|
445 |
+
wav = torch.FloatTensor(wav).unsqueeze(0)
|
446 |
+
mel, _, _, _ = wav2filterbanks(wav.to(device))
|
447 |
+
spec = mel.squeeze(0).cpu().numpy()
|
448 |
+
orig_spec = spec
|
449 |
+
spec = np.array([spec[i:i+(window_frames*stride), :] for i in range(0, spec.shape[0], stride) if (i+(window_frames*stride) <= spec.shape[0])])
|
450 |
+
|
451 |
+
if len(spec) != num_frames:
|
452 |
+
spec = spec[:num_frames]
|
453 |
+
frame_diff = np.abs(len(spec) - num_frames)
|
454 |
+
if frame_diff > 60:
|
455 |
+
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
|
456 |
+
|
457 |
+
return spec, orig_spec, "success"
|
458 |
+
|
459 |
+
|
460 |
+
def calc_optimal_av_offset(vid_emb, aud_emb, num_avg_frames, model):
|
461 |
+
'''
|
462 |
+
This function calculates the audio-visual offset between the video and audio
|
463 |
+
|
464 |
+
Args:
|
465 |
+
- vid_emb (array) : Video embedding array
|
466 |
+
- aud_emb (array) : Audio embedding array
|
467 |
+
- num_avg_frames (int) : Number of frames to average the scores
|
468 |
+
- model (object) : Model object
|
469 |
+
Returns:
|
470 |
+
- offset (int) : Optimal audio-visual offset
|
471 |
+
- msg (string) : Message to be returned
|
472 |
+
'''
|
473 |
+
|
474 |
+
pos_vid_emb, all_aud_emb, pos_idx, stride, status = create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames)
|
475 |
+
if status != "success":
|
476 |
+
return None, status
|
477 |
+
scores, _ = calc_av_scores(pos_vid_emb, all_aud_emb, model)
|
478 |
+
offset = scores.argmax()*stride - pos_idx
|
479 |
+
|
480 |
+
return offset.item(), "success"
|
481 |
+
|
482 |
+
def create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames, stride=5):
|
483 |
+
|
484 |
+
'''
|
485 |
+
This function creates all possible positive and negative audio embeddings to compare and obtain the sync offset
|
486 |
+
|
487 |
+
Args:
|
488 |
+
- vid_emb (array) : Video embedding array
|
489 |
+
- aud_emb (array) : Audio embedding array
|
490 |
+
- num_avg_frames (int) : Number of frames to average the scores
|
491 |
+
- stride (int) : Stride to extract the negative windows
|
492 |
+
Returns:
|
493 |
+
- vid_emb_pos (array) : Positive video embedding array
|
494 |
+
- aud_emb_posneg (array) : All possible combinations of audio embedding array
|
495 |
+
- pos_idx_frame (int) : Positive video embedding array frame
|
496 |
+
- stride (int) : Stride used to extract the negative windows
|
497 |
+
- msg (string) : Message to be returned
|
498 |
+
'''
|
499 |
+
|
500 |
+
slice_size = num_avg_frames
|
501 |
+
aud_emb_posneg = aud_emb.squeeze(1).unfold(-1, slice_size, stride)
|
502 |
+
aud_emb_posneg = aud_emb_posneg.permute([0, 2, 1, 3])
|
503 |
+
aud_emb_posneg = aud_emb_posneg[:, :int(n_negative_samples/stride)+1]
|
504 |
+
|
505 |
+
pos_idx = (aud_emb_posneg.shape[1]//2)
|
506 |
+
pos_idx_frame = pos_idx*stride
|
507 |
+
|
508 |
+
min_offset_frames = -(pos_idx)*stride
|
509 |
+
max_offset_frames = (aud_emb_posneg.shape[1] - pos_idx - 1)*stride
|
510 |
+
print("With the current video length and the number of average frames, the model can predict the offsets in the range: [{}, {}]".format(min_offset_frames, max_offset_frames))
|
511 |
+
|
512 |
+
vid_emb_pos = vid_emb[:, :, pos_idx_frame:pos_idx_frame+slice_size]
|
513 |
+
if vid_emb_pos.shape[2] != slice_size:
|
514 |
+
msg = "Video is too short to use {} frames to average the scores. Please use a longer input video or reduce the number of average frames".format(slice_size)
|
515 |
+
return None, None, None, None, msg
|
516 |
+
|
517 |
+
return vid_emb_pos, aud_emb_posneg, pos_idx_frame, stride, "success"
|
518 |
+
|
519 |
+
def calc_av_scores(vid_emb, aud_emb, model):
|
520 |
+
|
521 |
+
'''
|
522 |
+
This function calls functions to calculate the audio-visual similarity and attention map between the video and audio embeddings
|
523 |
+
|
524 |
+
Args:
|
525 |
+
- vid_emb (array) : Video embedding array
|
526 |
+
- aud_emb (array) : Audio embedding array
|
527 |
+
- model (object) : Model object
|
528 |
+
Returns:
|
529 |
+
- scores (array) : Audio-visual similarity scores
|
530 |
+
- att_map (array) : Attention map
|
531 |
+
'''
|
532 |
+
|
533 |
+
scores = calc_att_map(vid_emb, aud_emb, model)
|
534 |
+
att_map = logsoftmax_2d(scores)
|
535 |
+
scores = scores.mean(-1)
|
536 |
+
|
537 |
+
return scores, att_map
|
538 |
+
|
539 |
+
def calc_att_map(vid_emb, aud_emb, model):
|
540 |
+
|
541 |
+
'''
|
542 |
+
This function calculates the similarity between the video and audio embeddings
|
543 |
+
|
544 |
+
Args:
|
545 |
+
- vid_emb (array) : Video embedding array
|
546 |
+
- aud_emb (array) : Audio embedding array
|
547 |
+
- model (object) : Model object
|
548 |
+
Returns:
|
549 |
+
- scores (array) : Audio-visual similarity scores
|
550 |
+
'''
|
551 |
+
|
552 |
+
vid_emb = vid_emb[:, :, None]
|
553 |
+
aud_emb = aud_emb.transpose(1, 2)
|
554 |
+
|
555 |
+
scores = run_func_in_parts(lambda x, y: (x * y).sum(1),
|
556 |
+
vid_emb,
|
557 |
+
aud_emb,
|
558 |
+
part_len=10,
|
559 |
+
dim=3,
|
560 |
+
device=device)
|
561 |
+
|
562 |
+
scores = model.logits_scale(scores[..., None]).squeeze(-1)
|
563 |
+
|
564 |
+
return scores
|
565 |
+
|
566 |
+
def generate_video(frames, audio_file, video_fname):
|
567 |
+
|
568 |
+
'''
|
569 |
+
This function generates the video from the frames and audio file
|
570 |
+
|
571 |
+
Args:
|
572 |
+
- frames (array) : Frames to be used to generate the video
|
573 |
+
- audio_file (string) : Path of the audio file
|
574 |
+
- video_fname (string) : Path of the video file
|
575 |
+
Returns:
|
576 |
+
- video_output (string) : Path of the video file
|
577 |
+
'''
|
578 |
+
|
579 |
+
fname = 'inference.avi'
|
580 |
+
video = cv2.VideoWriter(fname, cv2.VideoWriter_fourcc(*'DIVX'), 25, (frames[0].shape[1], frames[0].shape[0]))
|
581 |
+
|
582 |
+
for i in range(len(frames)):
|
583 |
+
video.write(cv2.cvtColor(frames[i], cv2.COLOR_BGR2RGB))
|
584 |
+
video.release()
|
585 |
+
|
586 |
+
no_sound_video = video_fname + '_nosound.mp4'
|
587 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
|
588 |
+
if status != 0:
|
589 |
+
msg = "Oops! Could not generate the video. Please check the input video and try again."
|
590 |
+
return None, msg
|
591 |
+
|
592 |
+
video_output = video_fname + '.mp4'
|
593 |
+
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 -shortest %s' %
|
594 |
+
(audio_file, no_sound_video, video_output), shell=True)
|
595 |
+
if status != 0:
|
596 |
+
msg = "Oops! Could not generate the video. Please check the input video and try again."
|
597 |
+
return None, msg
|
598 |
+
|
599 |
+
os.remove(fname)
|
600 |
+
os.remove(no_sound_video)
|
601 |
+
|
602 |
+
return video_output
|
603 |
+
|
604 |
+
def sync_correct_video(video_path, frames, wav_file, offset, result_folder, sample_rate=16000, fps=25):
|
605 |
+
|
606 |
+
'''
|
607 |
+
This function corrects the video and audio to sync with each other
|
608 |
+
|
609 |
+
Args:
|
610 |
+
- video_path (string) : Path of the video file
|
611 |
+
- frames (array) : Frames to be used to generate the video
|
612 |
+
- wav_file (string) : Path of the audio file
|
613 |
+
- offset (int) : Predicted sync-offset to be used to correct the video
|
614 |
+
- result_folder (string) : Path of the result folder to save the output sync-corrected video
|
615 |
+
- sample_rate (int) : Sample rate of the audio
|
616 |
+
- fps (int) : Frames per second of the video
|
617 |
+
Returns:
|
618 |
+
- video_output (string) : Path of the video file
|
619 |
+
'''
|
620 |
+
|
621 |
+
if offset == 0:
|
622 |
+
print("The input audio and video are in-sync! No need to perform sync correction.")
|
623 |
+
return video_path
|
624 |
+
|
625 |
+
print("Performing Sync Correction...")
|
626 |
+
corrected_frames = np.zeros_like(frames)
|
627 |
+
if offset > 0:
|
628 |
+
audio_offset = int(offset*(sample_rate/fps))
|
629 |
+
wav = librosa.core.load(wav_file, sr=sample_rate)[0]
|
630 |
+
corrected_wav = wav[audio_offset:]
|
631 |
+
corrected_wav_file = os.path.join(result_folder, "audio_sync_corrected.wav")
|
632 |
+
write(corrected_wav_file, sample_rate, corrected_wav)
|
633 |
+
wav_file = corrected_wav_file
|
634 |
+
corrected_frames = frames
|
635 |
+
elif offset < 0:
|
636 |
+
corrected_frames[0:len(frames)+offset] = frames[np.abs(offset):]
|
637 |
+
corrected_frames = corrected_frames[:len(frames)-np.abs(offset)]
|
638 |
+
|
639 |
+
corrected_video_path = os.path.join(result_folder, "result_sync_corrected")
|
640 |
+
video_output = generate_video(corrected_frames, wav_file, corrected_video_path)
|
641 |
+
|
642 |
+
return video_output
|
643 |
+
|
644 |
+
class Logger:
|
645 |
+
def __init__(self, filename):
|
646 |
+
self.terminal = sys.stdout
|
647 |
+
self.log = open(filename, "w")
|
648 |
+
|
649 |
+
def write(self, message):
|
650 |
+
self.terminal.write(message)
|
651 |
+
self.log.write(message)
|
652 |
+
|
653 |
+
def flush(self):
|
654 |
+
self.terminal.flush()
|
655 |
+
self.log.flush()
|
656 |
+
|
657 |
+
def isatty(self):
|
658 |
+
return False
|
659 |
+
|
660 |
+
|
661 |
+
def process_video(video_path, num_avg_frames, apply_preprocess):
|
662 |
+
try:
|
663 |
+
# Extract the video filename
|
664 |
+
video_fname = os.path.basename(video_path.split(".")[0])
|
665 |
+
|
666 |
+
# Create folders to save the inputs and results
|
667 |
+
result_folder = os.path.join("results", video_fname)
|
668 |
+
result_folder_input = os.path.join(result_folder, "input")
|
669 |
+
result_folder_output = os.path.join(result_folder, "output")
|
670 |
+
|
671 |
+
if os.path.exists(result_folder):
|
672 |
+
rmtree(result_folder)
|
673 |
+
|
674 |
+
os.makedirs(result_folder)
|
675 |
+
os.makedirs(result_folder_input)
|
676 |
+
os.makedirs(result_folder_output)
|
677 |
+
|
678 |
+
|
679 |
+
# Preprocess the video
|
680 |
+
print("Applying preprocessing: ", apply_preprocess)
|
681 |
+
wav_file, fps, vid_path_processed, status = preprocess_video(video_path, result_folder_input, apply_preprocess)
|
682 |
+
if status != "success":
|
683 |
+
return status, None
|
684 |
+
print("Successfully preprocessed the video")
|
685 |
+
|
686 |
+
# Resample the video to 25 fps if it is not already 25 fps
|
687 |
+
print("FPS of video: ", fps)
|
688 |
+
if fps!=25:
|
689 |
+
vid_path = resample_video(vid_path_processed, "preprocessed_video_25fps", result_folder_input)
|
690 |
+
orig_vid_path_25fps = resample_video(video_path, "input_video_25fps", result_folder_input)
|
691 |
+
else:
|
692 |
+
vid_path = vid_path_processed
|
693 |
+
orig_vid_path_25fps = video_path
|
694 |
+
|
695 |
+
# Load the original video frames (before pre-processing) - Needed for the final sync-correction
|
696 |
+
orig_frames, status = load_video_frames(orig_vid_path_25fps)
|
697 |
+
if status != "success":
|
698 |
+
return status, None
|
699 |
+
|
700 |
+
# Load the pre-processed video frames
|
701 |
+
frames, status = load_video_frames(vid_path)
|
702 |
+
if status != "success":
|
703 |
+
return status, None
|
704 |
+
print("Successfully extracted the video frames")
|
705 |
+
|
706 |
+
if len(frames) < num_avg_frames:
|
707 |
+
return "Error: The input video is too short. Please use a longer input video.", None
|
708 |
+
|
709 |
+
# Load keypoints and check if gestures are visible
|
710 |
+
kp_dict, status = get_keypoints(frames)
|
711 |
+
if status != "success":
|
712 |
+
return status, None
|
713 |
+
print("Successfully extracted the keypoints: ", len(kp_dict), len(kp_dict["kps"]))
|
714 |
+
|
715 |
+
status = check_visible_gestures(kp_dict)
|
716 |
+
if status != "success":
|
717 |
+
return status, None
|
718 |
+
|
719 |
+
# Load RGB frames
|
720 |
+
rgb_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict, window_frames=25, width=480, height=270)
|
721 |
+
if status != "success":
|
722 |
+
return status, None
|
723 |
+
print("Successfully loaded the RGB frames")
|
724 |
+
|
725 |
+
# Convert frames to tensor
|
726 |
+
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
|
727 |
+
rgb_frames = torch.FloatTensor(rgb_frames).unsqueeze(0)
|
728 |
+
B = rgb_frames.size(0)
|
729 |
+
print("Successfully converted the frames to tensor")
|
730 |
+
|
731 |
+
# Load spectrograms
|
732 |
+
spec, orig_spec, status = load_spectrograms(wav_file, num_frames, window_frames=25)
|
733 |
+
if status != "success":
|
734 |
+
return status, None
|
735 |
+
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0, 1, 2, 4, 3)
|
736 |
+
print("Successfully loaded the spectrograms")
|
737 |
+
|
738 |
+
# Create input windows
|
739 |
+
video_sequences = torch.cat([rgb_frames[:, :, i] for i in range(rgb_frames.size(2))], dim=0)
|
740 |
+
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
|
741 |
+
|
742 |
+
# Load the trained model
|
743 |
+
model = Transformer_RGB()
|
744 |
+
model = load_checkpoint(CHECKPOINT_PATH, model)
|
745 |
+
print("Successfully loaded the model")
|
746 |
+
|
747 |
+
# Process in batches
|
748 |
+
batch_size = 12
|
749 |
+
video_emb = []
|
750 |
+
audio_emb = []
|
751 |
+
|
752 |
+
for i in tqdm(range(0, len(video_sequences), batch_size)):
|
753 |
+
video_inp = video_sequences[i:i+batch_size, ]
|
754 |
+
audio_inp = audio_sequences[i:i+batch_size, ]
|
755 |
+
|
756 |
+
vid_emb = model.forward_vid(video_inp.to(device))
|
757 |
+
vid_emb = torch.mean(vid_emb, axis=-1).unsqueeze(-1)
|
758 |
+
aud_emb = model.forward_aud(audio_inp.to(device))
|
759 |
+
|
760 |
+
video_emb.append(vid_emb.detach())
|
761 |
+
audio_emb.append(aud_emb.detach())
|
762 |
+
|
763 |
+
torch.cuda.empty_cache()
|
764 |
+
|
765 |
+
audio_emb = torch.cat(audio_emb, dim=0)
|
766 |
+
video_emb = torch.cat(video_emb, dim=0)
|
767 |
+
|
768 |
+
# L2 normalize embeddings
|
769 |
+
video_emb = torch.nn.functional.normalize(video_emb, p=2, dim=1)
|
770 |
+
audio_emb = torch.nn.functional.normalize(audio_emb, p=2, dim=1)
|
771 |
+
|
772 |
+
audio_emb = torch.split(audio_emb, B, dim=0)
|
773 |
+
audio_emb = torch.stack(audio_emb, dim=2)
|
774 |
+
audio_emb = audio_emb.squeeze(3)
|
775 |
+
audio_emb = audio_emb[:, None]
|
776 |
+
|
777 |
+
video_emb = torch.split(video_emb, B, dim=0)
|
778 |
+
video_emb = torch.stack(video_emb, dim=2)
|
779 |
+
video_emb = video_emb.squeeze(3)
|
780 |
+
print("Successfully extracted GestSync embeddings")
|
781 |
+
|
782 |
+
# Calculate sync offset
|
783 |
+
pred_offset, status = calc_optimal_av_offset(video_emb, audio_emb, num_avg_frames, model)
|
784 |
+
if status != "success":
|
785 |
+
return status, None
|
786 |
+
print("Predicted offset: ", pred_offset)
|
787 |
+
|
788 |
+
# Generate sync-corrected video
|
789 |
+
video_output = sync_correct_video(video_path, orig_frames, wav_file, pred_offset, result_folder_output, sample_rate=16000, fps=fps)
|
790 |
+
print("Successfully generated the video:", video_output)
|
791 |
+
|
792 |
+
return f"Predicted offset: {pred_offset}", video_output
|
793 |
+
|
794 |
+
except Exception as e:
|
795 |
+
return f"Error: {str(e)}", None
|
796 |
+
|
797 |
+
def read_logs():
|
798 |
+
sys.stdout.flush()
|
799 |
+
with open("output.log", "r") as f:
|
800 |
+
return f.read()
|
801 |
+
|
802 |
+
|
803 |
+
if __name__ == "__main__":
|
804 |
+
|
805 |
+
sys.stdout = Logger("output.log")
|
806 |
+
|
807 |
+
|
808 |
+
# Define the custom HTML for the header
|
809 |
+
custom_css = """
|
810 |
+
<style>
|
811 |
+
body {
|
812 |
+
background-color: #ffffff;
|
813 |
+
color: #333333; /* Default text color */
|
814 |
+
}
|
815 |
+
.container {
|
816 |
+
max-width: 100% !important;
|
817 |
+
padding-left: 0 !important;
|
818 |
+
padding-right: 0 !important;
|
819 |
+
}
|
820 |
+
.header {
|
821 |
+
background-color: #f0f0f0;
|
822 |
+
color: #333333;
|
823 |
+
padding: 30px;
|
824 |
+
margin-bottom: 30px;
|
825 |
+
text-align: center;
|
826 |
+
font-family: 'Helvetica Neue', Arial, sans-serif;
|
827 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
828 |
+
}
|
829 |
+
.header h1 {
|
830 |
+
font-size: 36px;
|
831 |
+
margin-bottom: 15px;
|
832 |
+
font-weight: bold;
|
833 |
+
color: #333333; /* Explicitly set heading color */
|
834 |
+
}
|
835 |
+
.header h2 {
|
836 |
+
font-size: 24px;
|
837 |
+
margin-bottom: 10px;
|
838 |
+
color: #333333; /* Explicitly set subheading color */
|
839 |
+
}
|
840 |
+
.header p {
|
841 |
+
font-size: 18px;
|
842 |
+
margin: 5px 0;
|
843 |
+
color: #666666;
|
844 |
+
}
|
845 |
+
.blue-text {
|
846 |
+
color: #4a90e2;
|
847 |
+
}
|
848 |
+
/* Custom styles for slider container */
|
849 |
+
.slider-container {
|
850 |
+
background-color: white !important;
|
851 |
+
padding-top: 0.9em;
|
852 |
+
padding-bottom: 0.9em;
|
853 |
+
}
|
854 |
+
/* Add gap before examples */
|
855 |
+
.examples-holder {
|
856 |
+
margin-top: 2em;
|
857 |
+
}
|
858 |
+
/* Set fixed size for example videos */
|
859 |
+
.gradio-container .gradio-examples .gr-sample {
|
860 |
+
width: 240px !important;
|
861 |
+
height: 135px !important;
|
862 |
+
object-fit: cover;
|
863 |
+
display: inline-block;
|
864 |
+
margin-right: 10px;
|
865 |
+
}
|
866 |
+
|
867 |
+
.gradio-container .gradio-examples {
|
868 |
+
display: flex;
|
869 |
+
flex-wrap: wrap;
|
870 |
+
gap: 10px;
|
871 |
+
}
|
872 |
+
|
873 |
+
/* Ensure the parent container does not stretch */
|
874 |
+
.gradio-container .gradio-examples {
|
875 |
+
max-width: 100%;
|
876 |
+
overflow: hidden;
|
877 |
+
}
|
878 |
+
|
879 |
+
/* Additional styles to ensure proper sizing in Safari */
|
880 |
+
.gradio-container .gradio-examples .gr-sample img {
|
881 |
+
width: 240px !important;
|
882 |
+
height: 135px !important;
|
883 |
+
object-fit: cover;
|
884 |
+
}
|
885 |
+
</style>
|
886 |
+
"""
|
887 |
+
|
888 |
+
custom_html = custom_css + """
|
889 |
+
<div class="header">
|
890 |
+
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
|
891 |
+
<h2>Upload any video to predict the synchronization offset and generate a sync-corrected video</h2>
|
892 |
+
<p>Sindhu Hegde and Andrew Zisserman</p>
|
893 |
+
<p>VGG, University of Oxford</p>
|
894 |
+
</div>
|
895 |
+
"""
|
896 |
+
|
897 |
+
# Define paths to sample videos
|
898 |
+
sample_videos = [
|
899 |
+
"samples/sync_sample_1.mp4",
|
900 |
+
"samples/sync_sample_2.mp4",
|
901 |
+
]
|
902 |
+
|
903 |
+
# Define Gradio interface
|
904 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
|
905 |
+
gr.HTML(custom_html)
|
906 |
+
with gr.Row():
|
907 |
+
with gr.Column():
|
908 |
+
with gr.Group(elem_classes="slider-container"):
|
909 |
+
num_avg_frames = gr.Slider(
|
910 |
+
minimum=50,
|
911 |
+
maximum=150,
|
912 |
+
step=5,
|
913 |
+
value=75,
|
914 |
+
label="Number of Average Frames",
|
915 |
+
)
|
916 |
+
apply_preprocess = gr.Checkbox(label="Apply Preprocessing", value=False)
|
917 |
+
video_input = gr.Video(label="Upload Video", height=400)
|
918 |
+
|
919 |
+
with gr.Column():
|
920 |
+
result_text = gr.Textbox(label="Result")
|
921 |
+
output_video = gr.Video(label="Sync Corrected Video", height=400)
|
922 |
+
|
923 |
+
with gr.Row():
|
924 |
+
submit_button = gr.Button("Submit", variant="primary")
|
925 |
+
clear_button = gr.Button("Clear")
|
926 |
+
|
927 |
+
submit_button.click(
|
928 |
+
fn=process_video,
|
929 |
+
inputs=[video_input, num_avg_frames, apply_preprocess],
|
930 |
+
outputs=[result_text, output_video]
|
931 |
+
)
|
932 |
+
|
933 |
+
clear_button.click(
|
934 |
+
fn=lambda: (None, 75, False, "", None),
|
935 |
+
inputs=[],
|
936 |
+
outputs=[video_input, num_avg_frames, apply_preprocess, result_text, output_video]
|
937 |
+
)
|
938 |
+
|
939 |
+
gr.HTML('<div class="examples-holder"></div>')
|
940 |
+
|
941 |
+
# Add examples
|
942 |
+
gr.Examples(
|
943 |
+
examples=sample_videos,
|
944 |
+
inputs=video_input,
|
945 |
+
outputs=None,
|
946 |
+
fn=None,
|
947 |
+
cache_examples=False,
|
948 |
+
)
|
949 |
+
|
950 |
+
logs = gr.Textbox(label="Logs")
|
951 |
+
demo.load(read_logs, None, logs, every=1)
|
952 |
+
|
953 |
+
# Launch the interface
|
954 |
+
demo.queue().launch(allowed_paths=["."], show_error=True)
|
preprocess/inference_preprocess.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
|
3 |
+
import sys, os, argparse, pickle, subprocess, cv2, math
|
4 |
+
import numpy as np
|
5 |
+
from shutil import rmtree, copy, copytree
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import scenedetect
|
9 |
+
from scenedetect.video_manager import VideoManager
|
10 |
+
from scenedetect.scene_manager import SceneManager
|
11 |
+
from scenedetect.stats_manager import StatsManager
|
12 |
+
from scenedetect.detectors import ContentDetector
|
13 |
+
|
14 |
+
from scipy.interpolate import interp1d
|
15 |
+
from scipy import signal
|
16 |
+
|
17 |
+
from ultralytics import YOLO
|
18 |
+
|
19 |
+
from decord import VideoReader
|
20 |
+
|
21 |
+
parser = argparse.ArgumentParser(description="FaceTracker")
|
22 |
+
parser.add_argument('--data_dir', type=str, help='directory to save intermediate temp results')
|
23 |
+
parser.add_argument('--facedet_scale', type=float, default=0.25, help='Scale factor for face detection')
|
24 |
+
parser.add_argument('--crop_scale', type=float, default=0, help='Scale bounding box')
|
25 |
+
parser.add_argument('--min_track', type=int, default=50, help='Minimum facetrack duration')
|
26 |
+
parser.add_argument('--frame_rate', type=int, default=25, help='Frame rate')
|
27 |
+
parser.add_argument('--num_failed_det', type=int, default=25, help='Number of missed detections allowed before tracking is stopped')
|
28 |
+
parser.add_argument('--min_frame_size', type=int, default=64, help='Minimum frame size in pixels')
|
29 |
+
parser.add_argument('--sd_root', type=str, required=True, help='Path to save crops')
|
30 |
+
parser.add_argument('--work_root', type=str, required=True, help='Path to save metadata files')
|
31 |
+
parser.add_argument('--data_root', type=str, required=True, help='Directory containing ONLY full uncropped videos')
|
32 |
+
opt = parser.parse_args()
|
33 |
+
|
34 |
+
|
35 |
+
def bb_intersection_over_union(boxA, boxB):
|
36 |
+
xA = max(boxA[0], boxB[0])
|
37 |
+
yA = max(boxA[1], boxB[1])
|
38 |
+
xB = min(boxA[2], boxB[2])
|
39 |
+
yB = min(boxB[3], boxB[3])
|
40 |
+
|
41 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
42 |
+
|
43 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
44 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
45 |
+
|
46 |
+
iou = interArea / float(boxAArea + boxBArea - interArea)
|
47 |
+
|
48 |
+
return iou
|
49 |
+
|
50 |
+
def track_shot(opt, scenefaces):
|
51 |
+
print("Tracking video...")
|
52 |
+
iouThres = 0.5 # Minimum IOU between consecutive face detections
|
53 |
+
tracks = []
|
54 |
+
|
55 |
+
while True:
|
56 |
+
track = []
|
57 |
+
for framefaces in scenefaces:
|
58 |
+
for face in framefaces:
|
59 |
+
if track == []:
|
60 |
+
track.append(face)
|
61 |
+
framefaces.remove(face)
|
62 |
+
elif face['frame'] - track[-1]['frame'] <= opt.num_failed_det:
|
63 |
+
iou = bb_intersection_over_union(face['bbox'], track[-1]['bbox'])
|
64 |
+
if iou > iouThres:
|
65 |
+
track.append(face)
|
66 |
+
framefaces.remove(face)
|
67 |
+
continue
|
68 |
+
else:
|
69 |
+
break
|
70 |
+
|
71 |
+
if track == []:
|
72 |
+
break
|
73 |
+
elif len(track) > opt.min_track:
|
74 |
+
framenum = np.array([f['frame'] for f in track])
|
75 |
+
bboxes = np.array([np.array(f['bbox']) for f in track])
|
76 |
+
|
77 |
+
frame_i = np.arange(framenum[0], framenum[-1] + 1)
|
78 |
+
|
79 |
+
bboxes_i = []
|
80 |
+
for ij in range(0, 4):
|
81 |
+
interpfn = interp1d(framenum, bboxes[:, ij])
|
82 |
+
bboxes_i.append(interpfn(frame_i))
|
83 |
+
bboxes_i = np.stack(bboxes_i, axis=1)
|
84 |
+
|
85 |
+
if max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1])) > opt.min_frame_size:
|
86 |
+
tracks.append({'frame': frame_i, 'bbox': bboxes_i})
|
87 |
+
|
88 |
+
return tracks
|
89 |
+
|
90 |
+
def check_folder(folder):
|
91 |
+
if os.path.exists(folder):
|
92 |
+
return True
|
93 |
+
return False
|
94 |
+
|
95 |
+
def del_folder(folder):
|
96 |
+
if os.path.exists(folder):
|
97 |
+
rmtree(folder)
|
98 |
+
|
99 |
+
def read_video(o, start_idx):
|
100 |
+
with open(o, 'rb') as o:
|
101 |
+
video_stream = VideoReader(o)
|
102 |
+
if start_idx > 0:
|
103 |
+
video_stream.skip_frames(start_idx)
|
104 |
+
return video_stream
|
105 |
+
|
106 |
+
def crop_video(opt, track, cropfile, tight_scale=1):
|
107 |
+
print("Cropping video...")
|
108 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
109 |
+
vOut = cv2.VideoWriter(cropfile + '.avi', fourcc, opt.frame_rate, (480, 270))
|
110 |
+
|
111 |
+
dets = {'x': [], 'y': [], 's': [], 'bbox': track['bbox'], 'frame': track['frame']}
|
112 |
+
|
113 |
+
for det in track['bbox']:
|
114 |
+
# Reduce the size of the bounding box by a small factor if tighter crops are needed (default -> no reduction in size)
|
115 |
+
width = (det[2] - det[0]) * tight_scale
|
116 |
+
height = (det[3] - det[1]) * tight_scale
|
117 |
+
center_x = (det[0] + det[2]) / 2
|
118 |
+
center_y = (det[1] + det[3]) / 2
|
119 |
+
|
120 |
+
dets['s'].append(max(height, width) / 2)
|
121 |
+
dets['y'].append(center_y) # crop center y
|
122 |
+
dets['x'].append(center_x) # crop center x
|
123 |
+
|
124 |
+
# Smooth detections
|
125 |
+
dets['s'] = signal.medfilt(dets['s'], kernel_size=13)
|
126 |
+
dets['x'] = signal.medfilt(dets['x'], kernel_size=13)
|
127 |
+
dets['y'] = signal.medfilt(dets['y'], kernel_size=13)
|
128 |
+
|
129 |
+
videofile = os.path.join(opt.avi_dir, 'video.avi')
|
130 |
+
frame_no_to_start = track['frame'][0]
|
131 |
+
video_stream = cv2.VideoCapture(videofile)
|
132 |
+
video_stream.set(cv2.CAP_PROP_POS_FRAMES, frame_no_to_start)
|
133 |
+
for fidx, frame in enumerate(track['frame']):
|
134 |
+
cs = opt.crop_scale
|
135 |
+
bs = dets['s'][fidx] # Detection box size
|
136 |
+
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
|
137 |
+
|
138 |
+
image = video_stream.read()[1]
|
139 |
+
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), 'constant', constant_values=(110, 110))
|
140 |
+
|
141 |
+
my = dets['y'][fidx] + bsi # BBox center Y
|
142 |
+
mx = dets['x'][fidx] + bsi # BBox center X
|
143 |
+
|
144 |
+
face = frame[int(my - bs):int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)):int(mx + bs * (1 + cs))]
|
145 |
+
vOut.write(cv2.resize(face, (480, 270)))
|
146 |
+
video_stream.release()
|
147 |
+
audiotmp = os.path.join(opt.tmp_dir, 'audio.wav')
|
148 |
+
audiostart = (track['frame'][0]) / opt.frame_rate
|
149 |
+
audioend = (track['frame'][-1] + 1) / opt.frame_rate
|
150 |
+
|
151 |
+
vOut.release()
|
152 |
+
|
153 |
+
# ========== CROP AUDIO FILE ==========
|
154 |
+
|
155 |
+
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ss %.3f -to %.3f %s" % (os.path.join(opt.avi_dir, 'audio.wav'), audiostart, audioend, audiotmp))
|
156 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
157 |
+
|
158 |
+
copy(audiotmp, cropfile + '.wav')
|
159 |
+
|
160 |
+
# print('Written %s' % cropfile)
|
161 |
+
# print('Mean pos: x %.2f y %.2f s %.2f' % (np.mean(dets['x']), np.mean(dets['y']), np.mean(dets['s'])))
|
162 |
+
|
163 |
+
return {'track': track, 'proc_track': dets}
|
164 |
+
|
165 |
+
def inference_video(opt, padding=0):
|
166 |
+
videofile = os.path.join(opt.avi_dir, 'video.avi')
|
167 |
+
vidObj = cv2.VideoCapture(videofile)
|
168 |
+
yolo_model = YOLO("yolov9s.pt")
|
169 |
+
|
170 |
+
dets = []
|
171 |
+
fidx = 0
|
172 |
+
print("Detecting people in the video using YOLO...")
|
173 |
+
while True:
|
174 |
+
success, image = vidObj.read()
|
175 |
+
if not success:
|
176 |
+
break
|
177 |
+
|
178 |
+
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
179 |
+
|
180 |
+
# Perform person detection
|
181 |
+
results = yolo_model(image_np, verbose=False)
|
182 |
+
detections = results[0].boxes
|
183 |
+
|
184 |
+
dets.append([])
|
185 |
+
for i, det in enumerate(detections):
|
186 |
+
x1, y1, x2, y2 = det.xyxy[0].detach().cpu().numpy()
|
187 |
+
cls = det.cls[0].detach().cpu().numpy()
|
188 |
+
conf = det.conf[0].detach().cpu().numpy()
|
189 |
+
if int(cls) == 0 and conf>0.7: # Class 0 is 'person' in COCO dataset
|
190 |
+
x1 = max(0, int(x1) - padding)
|
191 |
+
y1 = max(0, int(y1) - padding)
|
192 |
+
x2 = min(image_np.shape[1], int(x2) + padding)
|
193 |
+
y2 = min(image_np.shape[0], int(y2) + padding)
|
194 |
+
dets[-1].append({'frame': fidx, 'bbox': [x1, y1, x2, y2], 'conf': conf})
|
195 |
+
|
196 |
+
fidx += 1
|
197 |
+
|
198 |
+
savepath = os.path.join(opt.work_dir, 'faces.pckl')
|
199 |
+
|
200 |
+
with open(savepath, 'wb') as fil:
|
201 |
+
pickle.dump(dets, fil)
|
202 |
+
|
203 |
+
return dets
|
204 |
+
|
205 |
+
def scene_detect(opt):
|
206 |
+
print("Detecting scenes in the video...")
|
207 |
+
video_manager = VideoManager([os.path.join(opt.avi_dir, 'video.avi')])
|
208 |
+
stats_manager = StatsManager()
|
209 |
+
scene_manager = SceneManager(stats_manager)
|
210 |
+
scene_manager.add_detector(ContentDetector())
|
211 |
+
base_timecode = video_manager.get_base_timecode()
|
212 |
+
|
213 |
+
video_manager.set_downscale_factor()
|
214 |
+
video_manager.start()
|
215 |
+
scene_manager.detect_scenes(frame_source=video_manager)
|
216 |
+
scene_list = scene_manager.get_scene_list(base_timecode)
|
217 |
+
|
218 |
+
savepath = os.path.join(opt.work_dir, 'scene.pckl')
|
219 |
+
|
220 |
+
if scene_list == []:
|
221 |
+
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
|
222 |
+
|
223 |
+
with open(savepath, 'wb') as fil:
|
224 |
+
pickle.dump(scene_list, fil)
|
225 |
+
|
226 |
+
# print('%s - scenes detected %d' % (os.path.join(opt.avi_dir, 'video.avi'), len(scene_list)))
|
227 |
+
|
228 |
+
return scene_list
|
229 |
+
|
230 |
+
def process_video(file):
|
231 |
+
|
232 |
+
video_file_name = os.path.basename(file.strip())
|
233 |
+
sd_dest_folder = opt.sd_root
|
234 |
+
work_dest_folder = opt.work_root
|
235 |
+
|
236 |
+
|
237 |
+
del_folder(sd_dest_folder)
|
238 |
+
del_folder(work_dest_folder)
|
239 |
+
|
240 |
+
setattr(opt, 'videofile', file)
|
241 |
+
|
242 |
+
if os.path.exists(opt.work_dir):
|
243 |
+
rmtree(opt.work_dir)
|
244 |
+
|
245 |
+
if os.path.exists(opt.crop_dir):
|
246 |
+
rmtree(opt.crop_dir)
|
247 |
+
|
248 |
+
if os.path.exists(opt.avi_dir):
|
249 |
+
rmtree(opt.avi_dir)
|
250 |
+
|
251 |
+
if os.path.exists(opt.frames_dir):
|
252 |
+
rmtree(opt.frames_dir)
|
253 |
+
|
254 |
+
if os.path.exists(opt.tmp_dir):
|
255 |
+
rmtree(opt.tmp_dir)
|
256 |
+
|
257 |
+
os.makedirs(opt.work_dir)
|
258 |
+
os.makedirs(opt.crop_dir)
|
259 |
+
os.makedirs(opt.avi_dir)
|
260 |
+
os.makedirs(opt.frames_dir)
|
261 |
+
os.makedirs(opt.tmp_dir)
|
262 |
+
|
263 |
+
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -qscale:v 2 -async 1 -r 25 %s" % (opt.videofile,
|
264 |
+
os.path.join(opt.avi_dir,
|
265 |
+
'video.avi')))
|
266 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
267 |
+
if output != 0:
|
268 |
+
return
|
269 |
+
|
270 |
+
command = ("ffmpeg -hide_banner -loglevel panic -y -i %s -ac 1 -vn -acodec pcm_s16le -ar 16000 %s" % (os.path.join(opt.avi_dir,
|
271 |
+
'video.avi'),
|
272 |
+
os.path.join(opt.avi_dir,
|
273 |
+
'audio.wav')))
|
274 |
+
output = subprocess.call(command, shell=True, stdout=None)
|
275 |
+
if output != 0:
|
276 |
+
return
|
277 |
+
|
278 |
+
faces = inference_video(opt)
|
279 |
+
|
280 |
+
try:
|
281 |
+
scene = scene_detect(opt)
|
282 |
+
except scenedetect.video_stream.VideoOpenFailure:
|
283 |
+
return
|
284 |
+
|
285 |
+
|
286 |
+
allscenes = []
|
287 |
+
for shot in scene:
|
288 |
+
if shot[1].frame_num - shot[0].frame_num >= opt.min_track:
|
289 |
+
allscenes.append(track_shot(opt, faces[shot[0].frame_num:shot[1].frame_num]))
|
290 |
+
|
291 |
+
alltracks = []
|
292 |
+
for sc_num in range(len(allscenes)):
|
293 |
+
vidtracks = []
|
294 |
+
for ii, track in enumerate(allscenes[sc_num]):
|
295 |
+
os.makedirs(os.path.join(opt.crop_dir, 'scene_'+str(sc_num)), exist_ok=True)
|
296 |
+
vidtracks.append(crop_video(opt, track, os.path.join(opt.crop_dir, 'scene_'+str(sc_num), '%05d' % ii)))
|
297 |
+
alltracks.append(vidtracks)
|
298 |
+
|
299 |
+
savepath = os.path.join(opt.work_dir, 'tracks.pckl')
|
300 |
+
|
301 |
+
with open(savepath, 'wb') as fil:
|
302 |
+
pickle.dump(alltracks, fil)
|
303 |
+
|
304 |
+
rmtree(opt.tmp_dir)
|
305 |
+
rmtree(opt.avi_dir)
|
306 |
+
rmtree(opt.frames_dir)
|
307 |
+
copytree(opt.crop_dir, sd_dest_folder)
|
308 |
+
copytree(opt.work_dir, work_dest_folder)
|
309 |
+
|
310 |
+
|
311 |
+
if __name__ == "__main__":
|
312 |
+
|
313 |
+
file = opt.data_root
|
314 |
+
|
315 |
+
os.makedirs(opt.sd_root, exist_ok=True)
|
316 |
+
os.makedirs(opt.work_root, exist_ok=True)
|
317 |
+
|
318 |
+
|
319 |
+
setattr(opt, 'avi_dir', os.path.join(opt.data_dir, 'pyavi'))
|
320 |
+
setattr(opt, 'tmp_dir', os.path.join(opt.data_dir, 'pytmp'))
|
321 |
+
setattr(opt, 'work_dir', os.path.join(opt.data_dir, 'pywork'))
|
322 |
+
setattr(opt, 'crop_dir', os.path.join(opt.data_dir, 'pycrop'))
|
323 |
+
setattr(opt, 'frames_dir', os.path.join(opt.data_dir, 'pyframes'))
|
324 |
+
|
325 |
+
process_video(file)
|
326 |
+
|
yolov9c.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:876eb84f515d40c34a3b111f8fc1077d3aee59d3a243afd1cc5b77d520f237c7
|
3 |
-
size 51794840
|
|
|
|
|
|
|
|