Pyramid-Flow / trainer_misc /fsdp_trainer.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
import math
import sys
from typing import Iterable
import torch
import torch.nn as nn
import accelerate
from .utils import MetricLogger, SmoothedValue
def update_ema_for_dit(model, model_ema, accelerator, decay):
"""Apply exponential moving average update.
The weights are updated in-place as follow:
w_ema = w_ema * decay + (1 - decay) * w
Args:
model: active model that is being optimized
model_ema: running average model
decay: exponential decay parameter
"""
with torch.no_grad():
msd = accelerator.get_state_dict(model)
for k, ema_v in model_ema.state_dict().items():
if k in msd:
model_v = msd[k].detach().to(ema_v.device, dtype=ema_v.dtype)
ema_v.copy_(ema_v * decay + (1.0 - decay) * model_v)
def get_decay(optimization_step: int, ema_decay: float) -> float:
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - 1)
if step <= 0:
return 0.0
cur_decay_value = (1 + step) / (10 + step)
cur_decay_value = min(cur_decay_value, ema_decay)
cur_decay_value = max(cur_decay_value, 0.0)
return cur_decay_value
def train_one_epoch_with_fsdp(
runner,
model_ema: torch.nn.Module,
accelerator: accelerate.Accelerator,
model_dtype: str,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
lr_schedule_values,
device: torch.device,
epoch: int,
clip_grad: float = 1.0,
start_steps=None,
args=None,
print_freq=20,
iters_per_epoch=2000,
ema_decay=0.9999,
use_temporal_pyramid=True,
):
runner.dit.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
train_loss = 0.0
print("Start training epoch {}, {} iters per inner epoch. Training dtype {}".format(epoch, iters_per_epoch, model_dtype))
for step in metric_logger.log_every(range(iters_per_epoch), print_freq, header):
if step >= iters_per_epoch:
break
if lr_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_schedule_values[start_steps] * param_group.get("lr_scale", 1.0)
for _ in range(args.gradient_accumulation_steps):
with accelerator.accumulate(runner.dit):
# To fetch the data sample and Move the input to device
samples = next(data_loader)
video = samples['video'].to(accelerator.device)
text = samples['text']
identifier = samples['identifier']
# Perform the forward using the accerlate
loss, log_loss = runner(video, text, identifier,
use_temporal_pyramid=use_temporal_pyramid, accelerator=accelerator)
# Check if the loss is nan
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value), force=True)
sys.exit(1)
avg_loss = accelerator.gather(loss.repeat(args.batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
accelerator.backward(loss)
# clip the gradient
if accelerator.sync_gradients:
params_to_clip = runner.dit.parameters()
grad_norm = accelerator.clip_grad_norm_(params_to_clip, clip_grad)
# To deal with the abnormal data point
if train_loss >= 2.0:
print(f"The ERROR data sample, finding extreme high loss {train_loss}, skip updating the parameters", force=True)
# zero out the gradient, do not update
optimizer.zero_grad()
train_loss = 0.001 # fix the loss for logging
else:
optimizer.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
# Update every 100 steps
if model_ema is not None and start_steps % 100 == 0:
# cur_ema_decay = get_decay(start_steps, ema_decay)
cur_ema_decay = ema_decay
update_ema_for_dit(runner.dit, model_ema, accelerator, decay=cur_ema_decay)
start_steps += 1
# Report to tensorboard
accelerator.log({"train_loss": train_loss}, step=start_steps)
metric_logger.update(loss=train_loss)
train_loss = 0.0
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}