Spaces:
Build error
Build error
import math | |
import sys | |
from typing import Iterable | |
import torch | |
import torch.nn as nn | |
import accelerate | |
from .utils import MetricLogger, SmoothedValue | |
def update_ema_for_dit(model, model_ema, accelerator, decay): | |
"""Apply exponential moving average update. | |
The weights are updated in-place as follow: | |
w_ema = w_ema * decay + (1 - decay) * w | |
Args: | |
model: active model that is being optimized | |
model_ema: running average model | |
decay: exponential decay parameter | |
""" | |
with torch.no_grad(): | |
msd = accelerator.get_state_dict(model) | |
for k, ema_v in model_ema.state_dict().items(): | |
if k in msd: | |
model_v = msd[k].detach().to(ema_v.device, dtype=ema_v.dtype) | |
ema_v.copy_(ema_v * decay + (1.0 - decay) * model_v) | |
def get_decay(optimization_step: int, ema_decay: float) -> float: | |
""" | |
Compute the decay factor for the exponential moving average. | |
""" | |
step = max(0, optimization_step - 1) | |
if step <= 0: | |
return 0.0 | |
cur_decay_value = (1 + step) / (10 + step) | |
cur_decay_value = min(cur_decay_value, ema_decay) | |
cur_decay_value = max(cur_decay_value, 0.0) | |
return cur_decay_value | |
def train_one_epoch_with_fsdp( | |
runner, | |
model_ema: torch.nn.Module, | |
accelerator: accelerate.Accelerator, | |
model_dtype: str, | |
data_loader: Iterable, | |
optimizer: torch.optim.Optimizer, | |
lr_schedule_values, | |
device: torch.device, | |
epoch: int, | |
clip_grad: float = 1.0, | |
start_steps=None, | |
args=None, | |
print_freq=20, | |
iters_per_epoch=2000, | |
ema_decay=0.9999, | |
use_temporal_pyramid=True, | |
): | |
runner.dit.train() | |
metric_logger = MetricLogger(delimiter=" ") | |
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
metric_logger.add_meter('min_lr', SmoothedValue(window_size=1, fmt='{value:.6f}')) | |
header = 'Epoch: [{}]'.format(epoch) | |
train_loss = 0.0 | |
print("Start training epoch {}, {} iters per inner epoch. Training dtype {}".format(epoch, iters_per_epoch, model_dtype)) | |
for step in metric_logger.log_every(range(iters_per_epoch), print_freq, header): | |
if step >= iters_per_epoch: | |
break | |
if lr_schedule_values is not None: | |
for i, param_group in enumerate(optimizer.param_groups): | |
param_group["lr"] = lr_schedule_values[start_steps] * param_group.get("lr_scale", 1.0) | |
for _ in range(args.gradient_accumulation_steps): | |
with accelerator.accumulate(runner.dit): | |
# To fetch the data sample and Move the input to device | |
samples = next(data_loader) | |
video = samples['video'].to(accelerator.device) | |
text = samples['text'] | |
identifier = samples['identifier'] | |
# Perform the forward using the accerlate | |
loss, log_loss = runner(video, text, identifier, | |
use_temporal_pyramid=use_temporal_pyramid, accelerator=accelerator) | |
# Check if the loss is nan | |
loss_value = loss.item() | |
if not math.isfinite(loss_value): | |
print("Loss is {}, stopping training".format(loss_value), force=True) | |
sys.exit(1) | |
avg_loss = accelerator.gather(loss.repeat(args.batch_size)).mean() | |
train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
accelerator.backward(loss) | |
# clip the gradient | |
if accelerator.sync_gradients: | |
params_to_clip = runner.dit.parameters() | |
grad_norm = accelerator.clip_grad_norm_(params_to_clip, clip_grad) | |
# To deal with the abnormal data point | |
if train_loss >= 2.0: | |
print(f"The ERROR data sample, finding extreme high loss {train_loss}, skip updating the parameters", force=True) | |
# zero out the gradient, do not update | |
optimizer.zero_grad() | |
train_loss = 0.001 # fix the loss for logging | |
else: | |
optimizer.step() | |
optimizer.zero_grad() | |
if accelerator.sync_gradients: | |
# Update every 100 steps | |
if model_ema is not None and start_steps % 100 == 0: | |
# cur_ema_decay = get_decay(start_steps, ema_decay) | |
cur_ema_decay = ema_decay | |
update_ema_for_dit(runner.dit, model_ema, accelerator, decay=cur_ema_decay) | |
start_steps += 1 | |
# Report to tensorboard | |
accelerator.log({"train_loss": train_loss}, step=start_steps) | |
metric_logger.update(loss=train_loss) | |
train_loss = 0.0 | |
min_lr = 10. | |
max_lr = 0. | |
for group in optimizer.param_groups: | |
min_lr = min(min_lr, group["lr"]) | |
max_lr = max(max_lr, group["lr"]) | |
metric_logger.update(lr=max_lr) | |
metric_logger.update(min_lr=min_lr) | |
weight_decay_value = None | |
for group in optimizer.param_groups: | |
if group["weight_decay"] > 0: | |
weight_decay_value = group["weight_decay"] | |
metric_logger.update(weight_decay=weight_decay_value) | |
metric_logger.update(grad_norm=grad_norm) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |