Spaces:
Build error
Build error
import io | |
import os | |
import math | |
import time | |
import json | |
import glob | |
from collections import defaultdict, deque, OrderedDict | |
import datetime | |
import numpy as np | |
from pathlib import Path | |
import argparse | |
import torch | |
from torch import optim as optim | |
import torch.distributed as dist | |
try: | |
from torch._six import inf | |
except ImportError: | |
from torch import inf | |
from tensorboardX import SummaryWriter | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(*args, **kwargs): | |
if is_main_process(): | |
torch.save(*args, **kwargs) | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def init_distributed_mode(args, init_pytorch_ddp=True): | |
if int(os.getenv('OMPI_COMM_WORLD_SIZE', '0')) > 0: | |
rank = int(os.environ['OMPI_COMM_WORLD_RANK']) | |
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) | |
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) | |
os.environ["LOCAL_RANK"] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK'] | |
os.environ["RANK"] = os.environ['OMPI_COMM_WORLD_RANK'] | |
os.environ["WORLD_SIZE"] = os.environ['OMPI_COMM_WORLD_SIZE'] | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ["WORLD_SIZE"]) | |
args.gpu = int(os.environ["LOCAL_RANK"]) | |
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
args.gpu = int(os.environ['LOCAL_RANK']) | |
else: | |
print('Not using distributed mode') | |
args.distributed = False | |
return | |
args.distributed = True | |
args.dist_backend = 'nccl' | |
args.dist_url = "env://" | |
print('| distributed init (rank {}): {}, gpu {}'.format( | |
args.rank, args.dist_url, args.gpu), flush=True) | |
if init_pytorch_ddp: | |
# Init DDP Group, for script without using accelerate framework | |
torch.cuda.set_device(args.gpu) | |
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
world_size=args.world_size, rank=args.rank, timeout=datetime.timedelta(days=365)) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, | |
start_warmup_value=0, warmup_steps=-1): | |
warmup_schedule = np.array([]) | |
warmup_iters = warmup_epochs * niter_per_ep | |
if warmup_steps > 0: | |
warmup_iters = warmup_steps | |
print("Set warmup steps = %d" % warmup_iters) | |
if warmup_epochs > 0: | |
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
schedule = np.array( | |
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) | |
schedule = np.concatenate((warmup_schedule, schedule)) | |
assert len(schedule) == epochs * niter_per_ep | |
return schedule | |
def constant_scheduler(base_value, epochs, niter_per_ep, warmup_epochs=0, | |
start_warmup_value=1e-6, warmup_steps=-1): | |
warmup_schedule = np.array([]) | |
warmup_iters = warmup_epochs * niter_per_ep | |
if warmup_steps > 0: | |
warmup_iters = warmup_steps | |
print("Set warmup steps = %d" % warmup_iters) | |
if warmup_iters > 0: | |
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
iters = epochs * niter_per_ep - warmup_iters | |
schedule = np.array([base_value] * iters) | |
schedule = np.concatenate((warmup_schedule, schedule)) | |
assert len(schedule) == epochs * niter_per_ep | |
return schedule | |
def get_parameter_groups(model, weight_decay=1e-5, base_lr=1e-4, skip_list=(), get_num_layer=None, get_layer_scale=None, **kwargs): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(kwargs.get('filter_name', [])) > 0: | |
flag = False | |
for filter_n in kwargs.get('filter_name', []): | |
if filter_n in name: | |
print(f"filter {name} because of the pattern {filter_n}") | |
flag = True | |
if flag: | |
continue | |
default_scale=1. | |
if param.ndim <= 1 or name.endswith(".bias") or name in skip_list: # param.ndim <= 1 len(param.shape) == 1 | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
if get_num_layer is not None: | |
layer_id = get_num_layer(name) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
else: | |
layer_id = None | |
if group_name not in parameter_group_names: | |
if get_layer_scale is not None: | |
scale = get_layer_scale(layer_id) | |
else: | |
scale = default_scale | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr": base_lr, | |
"lr_scale": scale, | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr": base_lr, | |
"lr_scale": scale, | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()) | |
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None, **kwargs): | |
opt_lower = args.opt.lower() | |
weight_decay = args.weight_decay | |
skip = {} | |
if skip_list is not None: | |
skip = skip_list | |
elif hasattr(model, 'no_weight_decay'): | |
skip = model.no_weight_decay() | |
print(f"Skip weight decay name marked in model: {skip}") | |
parameters = get_parameter_groups(model, weight_decay, args.lr, skip, get_num_layer, get_layer_scale, **kwargs) | |
weight_decay = 0. | |
if 'fused' in opt_lower: | |
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' | |
opt_args = dict(lr=args.lr, weight_decay=weight_decay) | |
if hasattr(args, 'opt_eps') and args.opt_eps is not None: | |
opt_args['eps'] = args.opt_eps | |
if hasattr(args, 'opt_beta1') and args.opt_beta1 is not None: | |
opt_args['betas'] = (args.opt_beta1, args.opt_beta2) | |
print('Optimizer config:', opt_args) | |
opt_split = opt_lower.split('_') | |
opt_lower = opt_split[-1] | |
if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) | |
elif opt_lower == 'momentum': | |
opt_args.pop('eps', None) | |
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) | |
elif opt_lower == 'adam': | |
optimizer = optim.Adam(parameters, **opt_args) | |
elif opt_lower == 'adamw': | |
optimizer = optim.AdamW(parameters, **opt_args) | |
elif opt_lower == 'adadelta': | |
optimizer = optim.Adadelta(parameters, **opt_args) | |
elif opt_lower == 'rmsprop': | |
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) | |
else: | |
assert False and "Invalid optimizer" | |
raise ValueError | |
return optimizer | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if v is None: | |
continue | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
log_msg = [ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
] | |
if torch.cuda.is_available(): | |
log_msg.append('max mem: {memory:.0f}') | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB)) | |
else: | |
print(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time))) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('{} Total time: {} ({:.4f} s / it)'.format( | |
header, total_time_str, total_time / len(iterable))) | |
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None): | |
output_dir = Path(args.output_dir) | |
if args.auto_resume and len(args.resume) == 0: | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint.pth')) | |
if len(all_checkpoints) > 0: | |
args.resume = os.path.join(output_dir, 'checkpoint.pth') | |
else: | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) | |
latest_ckpt = -1 | |
for ckpt in all_checkpoints: | |
t = ckpt.split('-')[-1].split('.')[0] | |
if t.isdigit(): | |
latest_ckpt = max(int(t), latest_ckpt) | |
if latest_ckpt >= 0: | |
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) | |
print("Auto resume checkpoint: %s" % args.resume) | |
if args.resume: | |
if args.resume.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.resume, map_location='cpu', check_hash=True) | |
else: | |
checkpoint = torch.load(args.resume, map_location='cpu') | |
model_without_ddp.load_state_dict(checkpoint['model']) # strict: bool=True, , strict=False | |
print("Resume checkpoint %s" % args.resume) | |
if ('optimizer' in checkpoint) and ('epoch' in checkpoint) and (optimizer is not None): | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
print(f"Resume checkpoint at epoch {checkpoint['epoch']}, the global optmization step is {checkpoint['step']}") | |
args.start_epoch = checkpoint['epoch'] + 1 | |
args.global_step = checkpoint['step'] + 1 | |
if model_ema is not None: | |
if 'model_ema' in checkpoint: | |
ema_load_res = model_ema.load_state_dict(checkpoint["model_ema"]) | |
print(f"EMA Model Resume results: {ema_load_res}") | |
if 'scaler' in checkpoint: | |
loss_scaler.load_state_dict(checkpoint['scaler']) | |
print("With optim & sched!") | |
if ('optimizer_disc' in checkpoint) and (optimizer_disc is not None): | |
optimizer_disc.load_state_dict(checkpoint['optimizer_disc']) | |
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, optimizer_disc=None, save_ckpt_freq=1): | |
output_dir = Path(args.output_dir) | |
epoch_name = str(epoch) | |
checkpoint_paths = [output_dir / 'checkpoint.pth'] | |
if epoch == 'best': | |
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name),] | |
elif (epoch + 1) % save_ckpt_freq == 0: | |
checkpoint_paths.append(output_dir / ('checkpoint-%s.pth' % epoch_name)) | |
for checkpoint_path in checkpoint_paths: | |
to_save = { | |
'model': model_without_ddp.state_dict(), | |
'epoch': epoch, | |
'step' : args.global_step, | |
'args': args, | |
} | |
if optimizer is not None: | |
to_save['optimizer'] = optimizer.state_dict() | |
if loss_scaler is not None: | |
to_save['scaler'] = loss_scaler.state_dict() | |
if model_ema is not None: | |
to_save['model_ema'] = model_ema.state_dict() | |
if optimizer_disc is not None: | |
to_save['optimizer_disc'] = optimizer_disc.state_dict() | |
save_on_master(to_save, checkpoint_path) | |
def get_grad_norm_(parameters, norm_type: float = 2.0, layer_names=None) -> torch.Tensor: | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = [p for p in parameters if p.grad is not None] | |
norm_type = float(norm_type) | |
if len(parameters) == 0: | |
return torch.tensor(0.) | |
device = parameters[0].grad.device | |
if norm_type == inf: | |
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
else: | |
layer_norm = torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]) | |
total_norm = torch.norm(layer_norm, norm_type) | |
if layer_names is not None: | |
if torch.isnan(total_norm) or torch.isinf(total_norm) or total_norm > 1.0: | |
value_top, name_top = torch.topk(layer_norm, k=5) | |
print(f"Top norm value: {value_top}") | |
print(f"Top norm name: {[layer_names[i][7:] for i in name_top.tolist()]}") | |
return total_norm | |
class NativeScalerWithGradNormCount: | |
state_dict_key = "amp_scaler" | |
def __init__(self, enabled=True): | |
print(f"Set the loss scaled to {enabled}") | |
self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) | |
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, layer_names=None): | |
self._scaler.scale(loss).backward(create_graph=create_graph) | |
if update_grad: | |
if clip_grad is not None: | |
assert parameters is not None | |
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
else: | |
self._scaler.unscale_(optimizer) | |
norm = get_grad_norm_(parameters, layer_names=layer_names) | |
self._scaler.step(optimizer) | |
self._scaler.update() | |
else: | |
norm = None | |
return norm | |
def state_dict(self): | |
return self._scaler.state_dict() | |
def load_state_dict(self, state_dict): | |
self._scaler.load_state_dict(state_dict) |