File size: 6,229 Bytes
ca18077
 
 
 
 
 
 
 
 
 
 
 
3db6256
ca18077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2eb91
ca18077
 
 
 
 
 
 
 
 
 
 
 
 
9ae974c
 
 
 
 
 
 
 
 
 
ca18077
3db6256
ca18077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2eb91
ca18077
9ae974c
 
ca18077
 
 
 
fb2eb91
ca18077
fb2eb91
623b249
50358bf
ca18077
50358bf
ca18077
623b249
ca18077
 
 
fb2eb91
ca18077
9ae974c
ca18077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623b249
ca18077
fb2eb91
ca18077
 
 
 
 
 
9ae974c
 
ca18077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb2eb91
ca18077
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import spaces
import gradio as gr
import time
import torch
import numpy as np

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from diffusers import (
    StableDiffusionControlNetPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    UniPCMultistepScheduler,
)

from controlnet_aux import (
    CannyDetector,
    LineartDetector,
    PidiNetDetector,
    HEDdetector,
)

BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_EDIT_PROMPT = "change hair to blue"

DEFAULT_CATEGORY = "hair"

canny_detector = CannyDetector()
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_detector = lineart_detector.to(DEVICE)

pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
pidiNet_detector = pidiNet_detector.to(DEVICE)

hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
hed_detector = hed_detector.to(DEVICE)

controlnet = [
    ControlNetModel.from_pretrained(
        "lllyasviel/control_v11e_sd15_ip2p", 
        torch_dtype=torch.float16,
    ),
    ControlNetModel.from_pretrained(
        "lllyasviel/control_v11p_sd15_canny", 
        torch_dtype=torch.float16,
    ),
]

basepipeline = StableDiffusionControlNetPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    use_safetensors=True,
    controlnet=controlnet,
)

basepipeline.scheduler = UniPCMultistepScheduler.from_config(basepipeline.scheduler.config)

basepipeline = basepipeline.to(DEVICE)

basepipeline.enable_model_cpu_offload()

@spaces.GPU(duration=30)
def image_to_image(
    input_image: Image,
    edit_prompt: str,
    seed: int,
    num_steps: int,
    guidance_scale: float,
    image_guidance_scale: float,
    generate_size: int,
    cond_scale1: float = 1.2,
    cond_scale2: float = 1.2,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    lineart_image = lineart_detector(input_image, 384, generate_size)

    cond_image = [input_image, lineart_image]

    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    generated_image = basepipeline(
        generator=generator,
        prompt=edit_prompt,
        image=cond_image,
        height=generate_size,
        width=generate_size,
        guidance_scale=guidance_scale,
        image_guidance_scale=image_guidance_scale,
        num_inference_steps=num_steps,
        controlnet_conditioning_scale=[cond_scale1, cond_scale2],
    ).images[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    return generated_image, time_cost_str

def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                generate_size = gr.Number(label="Generate Size", value=512)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
                image_guidance_scale = gr.Slider(minimum=0, maximum=30, value=1.5, step=0.1, label="Image Guidance Scale")
            with gr.Column():
                with gr.Accordion("Advanced Options", open=False):
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    seed = gr.Number(label="Seed", value=8)
                    category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                    cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale1")
                    cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale2")
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, image_guidance_scale, generate_size, cond_scale1, cond_scale2],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image],
        )

    return demo