Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import time | |
import torch | |
import numpy as np | |
from tqdm.auto import tqdm | |
from torchvision import transforms as tfms | |
from PIL import Image | |
from segment_utils import( | |
segment_image, | |
restore_result, | |
) | |
from diffusers import ( | |
StableDiffusionPipeline, | |
DDIMScheduler, | |
) | |
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
DEFAULT_INPUT_PROMPT = "a woman" | |
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair" | |
DEFAULT_CATEGORY = "hair" | |
basepipeline = StableDiffusionPipeline.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config) | |
basepipeline = basepipeline.to(DEVICE) | |
basepipeline.enable_model_cpu_offload() | |
def image_to_image( | |
input_image: Image, | |
input_image_prompt: str, | |
edit_prompt: str, | |
num_steps: int, | |
start_step: int, | |
guidance_scale: float, | |
): | |
run_task_time = 0 | |
time_cost_str = '' | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
with torch.no_grad(): | |
input_image_tensor = tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE) | |
input_image_tensor = input_image_tensor.to(dtype=torch.float16) | |
latent = basepipeline.vae.encode(input_image_tensor * 2 - 1) | |
l = 0.18215 * latent.latent_dist.sample() | |
inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps) | |
generated_image = sample( | |
edit_prompt, | |
start_latents=inverted_latents[-(start_step + 1)][None], | |
start_step=start_step, | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
)[0] | |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
return generated_image, time_cost_str | |
def make_inpaint_condition(image, image_mask): | |
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
image[image_mask > 0.5] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |
## Inversion | |
def invert( | |
start_latents, | |
prompt, | |
guidance_scale=3.5, | |
num_inference_steps=80, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt="", | |
device=DEVICE, | |
): | |
# Encode prompt | |
text_embeddings = basepipeline._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
# Latents are now the specified start latents | |
latents = start_latents.clone() | |
# We'll keep a list of the inverted latents as the process goes on | |
intermediate_latents = [] | |
# Set num inference steps | |
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
# Reversed timesteps <<<<<<<<<<<<<<<<<<<< | |
timesteps = reversed(basepipeline.scheduler.timesteps) | |
for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1): | |
# We'll skip the final iteration | |
if i >= num_inference_steps - 1: | |
continue | |
t = timesteps[i] | |
# Expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t) | |
# Predict the noise residual | |
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# Perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t | |
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1 | |
alpha_t = basepipeline.scheduler.alphas_cumprod[current_t] | |
alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t] | |
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents) | |
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + ( | |
1 - alpha_t_next | |
).sqrt() * noise_pred | |
# Store | |
intermediate_latents.append(latents) | |
return torch.cat(intermediate_latents) | |
# Sample function (regular DDIM) | |
def sample( | |
prompt, | |
start_step=0, | |
start_latents=None, | |
guidance_scale=3.5, | |
num_inference_steps=30, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt="", | |
device=DEVICE, | |
): | |
# Encode prompt | |
text_embeddings = basepipeline._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
) | |
# Set num inference steps | |
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device) | |
# Create a random starting point if we don't have one already | |
if start_latents is None: | |
start_latents = torch.randn(1, 4, 64, 64, device=device) | |
start_latents *= basepipeline.scheduler.init_noise_sigma | |
latents = start_latents.clone() | |
for i in tqdm(range(start_step, num_inference_steps)): | |
t = basepipeline.scheduler.timesteps[i] | |
# Expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t) | |
# Predict the noise residual | |
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# Perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# Normally we'd rely on the scheduler to handle the update step: | |
# latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample | |
# Instead, let's do it ourselves: | |
prev_t = max(1, t.item() - (1000 // num_inference_steps)) # t-1 | |
alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()] | |
alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t] | |
predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt() | |
direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred | |
latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt | |
# Post-processing | |
images = basepipeline.decode_latents(latents) | |
images = basepipeline.numpy_to_pil(images) | |
return images | |
def get_time_cost(run_task_time, time_cost_str): | |
now_time = int(time.time()*1000) | |
if run_task_time == 0: | |
time_cost_str = 'start' | |
else: | |
if time_cost_str != '': | |
time_cost_str += f'-->' | |
time_cost_str += f'{now_time - run_task_time}' | |
run_task_time = now_time | |
return run_task_time, time_cost_str | |
def create_demo() -> gr.Blocks: | |
with gr.Blocks() as demo: | |
croper = gr.State() | |
with gr.Row(): | |
with gr.Column(): | |
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT) | |
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) | |
with gr.Column(): | |
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") | |
start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step") | |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") | |
with gr.Column(): | |
generate_size = gr.Number(label="Generate Size", value=512) | |
with gr.Accordion("Advanced Options", open=False): | |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) | |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") | |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
g_btn = gr.Button("Edit Image") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Column(): | |
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) | |
with gr.Column(): | |
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) | |
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
g_btn.click( | |
fn=segment_image, | |
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
outputs=[origin_area_image, croper], | |
).success( | |
fn=image_to_image, | |
inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale], | |
outputs=[generated_image, generated_cost], | |
).success( | |
fn=restore_result, | |
inputs=[croper, category, generated_image], | |
outputs=[restored_image], | |
) | |
return demo |