image2image / app_ddim.py
zhiweili
change base model
a823397
import spaces
import gradio as gr
import time
import torch
import numpy as np
from tqdm.auto import tqdm
from torchvision import transforms as tfms
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from diffusers import (
StableDiffusionPipeline,
DDIMScheduler,
)
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
BASE_MODEL = "Lykon/DreamShaper"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_INPUT_PROMPT = "a woman"
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair"
DEFAULT_CATEGORY = "hair"
basepipeline = StableDiffusionPipeline.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
# use_safetensors=True,
)
basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
basepipeline = basepipeline.to(DEVICE)
basepipeline.enable_model_cpu_offload()
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
num_steps: int,
start_step: int,
guidance_scale: float,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
with torch.no_grad():
input_image_tensor = tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE)
input_image_tensor = input_image_tensor.to(dtype=torch.float16)
latent = basepipeline.vae.encode(input_image_tensor * 2 - 1)
l = 0.18215 * latent.latent_dist.sample()
inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps)
generated_image = sample(
edit_prompt,
start_latents=inverted_latents[-(start_step + 1)][None],
start_step=start_step,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
)[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
## Inversion
@torch.no_grad()
def invert(
start_latents,
prompt,
guidance_scale=3.5,
num_inference_steps=80,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=DEVICE,
):
# Encode prompt
text_embeddings = basepipeline._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Latents are now the specified start latents
latents = start_latents.clone()
# We'll keep a list of the inverted latents as the process goes on
intermediate_latents = []
# Set num inference steps
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
timesteps = reversed(basepipeline.scheduler.timesteps)
for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1):
# We'll skip the final iteration
if i >= num_inference_steps - 1:
continue
t = timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1
alpha_t = basepipeline.scheduler.alphas_cumprod[current_t]
alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t]
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + (
1 - alpha_t_next
).sqrt() * noise_pred
# Store
intermediate_latents.append(latents)
return torch.cat(intermediate_latents)
# Sample function (regular DDIM)
@torch.no_grad()
def sample(
prompt,
start_step=0,
start_latents=None,
guidance_scale=3.5,
num_inference_steps=30,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="",
device=DEVICE,
):
# Encode prompt
text_embeddings = basepipeline._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Set num inference steps
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
# Create a random starting point if we don't have one already
if start_latents is None:
start_latents = torch.randn(1, 4, 64, 64, device=device)
start_latents *= basepipeline.scheduler.init_noise_sigma
latents = start_latents.clone()
for i in tqdm(range(start_step, num_inference_steps)):
t = basepipeline.scheduler.timesteps[i]
# Expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
# Predict the noise residual
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# Perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Normally we'd rely on the scheduler to handle the update step:
# latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
# Instead, let's do it ourselves:
prev_t = max(1, t.item() - (1000 // num_inference_steps)) # t-1
alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()]
alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t]
predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt()
direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred
latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt
# Post-processing
images = basepipeline.decode_latents(latents)
images = basepipeline.numpy_to_pil(images)
return images
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step")
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
with gr.Column():
generate_size = gr.Number(label="Generate Size", value=512)
with gr.Accordion("Advanced Options", open=False):
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale],
outputs=[generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, generated_image],
outputs=[restored_image],
)
return demo