File size: 21,735 Bytes
bcc0116
21bee4f
 
 
 
 
 
 
ac664de
21bee4f
ac664de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bee4f
 
 
 
 
 
ac664de
 
 
 
 
 
 
 
21bee4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac664de
21bee4f
 
 
 
 
 
 
ac664de
 
21bee4f
ac664de
 
 
 
 
 
 
 
 
21bee4f
ac664de
21bee4f
 
ac664de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bee4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac664de
 
 
 
 
21bee4f
 
 
 
 
ac664de
 
 
 
21bee4f
 
ac664de
 
21bee4f
ac664de
21bee4f
 
ac664de
 
 
 
 
21bee4f
 
 
ac664de
 
 
 
21bee4f
 
 
ac664de
 
 
 
 
 
 
 
 
 
21bee4f
 
ac664de
21bee4f
ac664de
 
 
 
 
 
 
21bee4f
ac664de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bee4f
 
 
 
 
ac664de
21bee4f
ac664de
21bee4f
 
ac664de
 
 
21bee4f
 
 
ac664de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bee4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac664de
 
21bee4f
 
ac664de
 
 
 
21bee4f
 
ac664de
 
21bee4f
 
ac664de
21bee4f
 
 
 
 
ac664de
21bee4f
 
 
 
 
 
ac664de
 
 
 
 
 
 
 
 
 
 
 
 
21bee4f
 
 
 
 
 
 
 
 
7ef10db
21bee4f
ac664de
21bee4f
 
 
 
 
 
 
 
ac664de
 
21bee4f
ac664de
 
21bee4f
ac664de
 
a7193d8
ac664de
 
a7193d8
ac664de
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Import necessary libraries
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.manifold import TSNE
from datasets import load_dataset, Dataset
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import time, random, datetime
import logging
from sklearn.cluster import HDBSCAN


BACKGROUND_COLOR = 'black'
COLOR = 'white'

def set_page_container_style(
        max_width: int = 10000, max_width_100_percent: bool = False,
        padding_top: int = 1, padding_right: int = 10, padding_left: int = 1, padding_bottom: int = 10,
        color: str = COLOR, background_color: str = BACKGROUND_COLOR,
    ):
        if max_width_100_percent:
            max_width_str = f'max-width: 100%;'
        else:
            max_width_str = f'max-width: {max_width}px;'
        st.markdown(
            f'''
            <style>
                .reportview-container .css-1lcbmhc .css-1outpf7 {{
                    padding-top: 35px;
                }}
                .reportview-container .main .block-container {{
                    {max_width_str}
                    padding-top: {padding_top}rem;
                    padding-right: {padding_right}rem;
                    padding-left: {padding_left}rem;
                    padding-bottom: {padding_bottom}rem;
                }}
                .reportview-container .main {{
                    color: {color};
                    background-color: {background_color};
                }}
            </style>
            ''',
            unsafe_allow_html=True,
        )

# Additional libraries for querying
from FlagEmbedding import FlagModel

# Global variables and dataset loading
global dataset_name
st.set_page_config(layout="wide")

dataset_name = "somewheresystems/dataclysm-arxiv"

set_page_container_style(
        max_width = 1600, max_width_100_percent = True,
        padding_top = 0, padding_right = 10, padding_left = 5, padding_bottom = 10
)
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
total_samples = len(st.session_state.dataclysm_arxiv)

logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
# Load the dataset once at the start
# Initialize the model for querying
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)


def load_data(num_samples):
    start_time = time.time() 
    dataset_name = 'somewheresystems/dataclysm-arxiv'
    # Load the dataset
    logging.info(f'Loading dataset...')
    dataset = load_dataset(dataset_name)
    total_samples = len(dataset['train'])

    logging.info('Converting to pandas dataframe...')
    # Convert the dataset to a pandas DataFrame
    df = dataset['train'].to_pandas()

    # Adjust num_samples if it's more than the total number of samples
    num_samples = min(num_samples, total_samples)
    st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')

    # Randomly sample the dataframe
    df = df.sample(n=num_samples)

    # Assuming 'embeddings' column contains the embeddings
    embeddings = df['title_embedding'].tolist()
    print("embeddings length: " + str(len(embeddings)))

    # Convert list of lists to numpy array
    embeddings = np.array(embeddings, dtype=object)
    end_time = time.time()  # End timing
    st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
    return df, embeddings

def perform_tsne(embeddings):
    start_time = time.time() 
    logging.info('Performing t-SNE...')

    n_samples = len(embeddings)
    perplexity = min(30, n_samples - 1) if n_samples > 1 else 1

    # Check if all embeddings have the same length
    if len(set([len(embed) for embed in embeddings])) > 1:
        raise ValueError("All embeddings should have the same length")

    # Dimensionality Reduction with t-SNE
    tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)

    # Create a placeholder for progress bar
    progress_text = st.empty()
    progress_text.text("t-SNE in progress...")

    tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))

    # Update progress bar to indicate completion
    progress_text.text(f"t-SNE completed at {datetime.datetime.now()}. Processed {n_samples} samples with perplexity {perplexity}.")
    end_time = time.time()  # End timing
    st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
    return tsne_results


def perform_clustering(df, tsne_results):
    start_time = time.time() 
    # Perform DBSCAN clustering
    logging.info('Performing HDBSCAN clustering...')
    # Step 3: Visualization with Plotly
    # Normalize the t-SNE results between 0 and 1
    df['tsne-3d-one'] = (tsne_results[:,0] - tsne_results[:,0].min()) / (tsne_results[:,0].max() - tsne_results[:,0].min())
    df['tsne-3d-two'] = (tsne_results[:,1] - tsne_results[:,1].min()) / (tsne_results[:,1].max() - tsne_results[:,1].min())
    df['tsne-3d-three'] = (tsne_results[:,2] - tsne_results[:,2].min()) / (tsne_results[:,2].max() - tsne_results[:,2].min())

    # Perform DBSCAN clustering
    hdbscan = HDBSCAN(min_cluster_size=10, min_samples=50)
    cluster_labels = hdbscan.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
    df['cluster'] = cluster_labels
    end_time = time.time()  # End timing
    st.sidebar.text(f'HDBSCAN clustering completed in {end_time - start_time:.3f} seconds')
    return df

def update_camera_position(fig, df, df_query, result_id, K=10):
    # Focus the camera on the closest result
    top_K_ids = df_query.sort_values(by='proximity', ascending=True).head(K)['id'].tolist()
    top_K_proximity = df_query['proximity'].tolist()
    top_results = df[df['id'].isin(top_K_ids)]
    camera_focus = dict(
        eye=dict(x=top_results.iloc[0]['tsne-3d-one']*0.1, y=top_results.iloc[0]['tsne-3d-two']*0.1, z=top_results.iloc[0]['tsne-3d-three']*0.1)
    )
    # Normalize the proximity values to range between 1 and 10
    normalized_proximity = [10 - (10 * (prox - min(top_K_proximity)) / (max(top_K_proximity) - min(top_K_proximity))) for prox in top_K_proximity]
    # Create a dictionary mapping id to normalized proximity
    id_to_proximity = dict(zip(top_K_ids, normalized_proximity))
    # Set marker sizes based on proximity for top K ids, all other points stay the same -- 500% zoom
    marker_sizes = [5 * id_to_proximity[id] if id in top_K_ids else 1 for id in df['id']]
    # Store the original colors in a separate column
    df['color'] = df['cluster']

    fig = go.Figure(data=[go.Scatter3d(
        x=df['tsne-3d-one'],
        y=df['tsne-3d-two'],
        z=df['tsne-3d-three'],
        mode='markers',
        marker=dict(size=marker_sizes, color=df['color'], colorscale='Viridis', opacity=0.8, line_width=0),
        hovertext=df['hovertext'],
        hoverinfo='text',
    )])
    # Set grid opacity to 10%
    fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                    yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                    zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))

    # Add lines stemming from the first point to all other points in the top K
    for i in range(1, K):  # there are K-1 lines from the first point to the other K-1 points
        fig.add_trace(go.Scatter3d(
            x=[top_results.iloc[0]['tsne-3d-one'], top_results.iloc[i]['tsne-3d-one']],
            y=[top_results.iloc[0]['tsne-3d-two'], top_results.iloc[i]['tsne-3d-two']],
            z=[top_results.iloc[0]['tsne-3d-three'], top_results.iloc[i]['tsne-3d-three']],
            mode='lines',
            line=dict(color='white',width=0.3),  # Set line opacity to 50%
            showlegend=True,
            name="centroid" if i == -1 else top_results.iloc[i]['id'],  # Set the legend to "Top Result" for the first entry, and to the title of the article for the rest
            hovertext=f'Title: Top K Results\nID: {top_K_ids[i]}, Proximity: {round(top_K_proximity[i], 4)}',
            hoverinfo='text',
        ))
    fig.update_layout(plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                scene_camera=camera_focus)
    return fig

def main():
    # Custom CSS
    custom_css = """
    <style>
        /* Define the font */
        @font-face {
            font-family: 'F';
            src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
        }
        /* Apply the font to all elements */
        * {
            font-family: 'F', sans-serif !important;
            color: #F8F8F8; /* Set the font color to F8F8F8 */
        }
        /* Add your CSS styles here */
        .stPlotlyChart {
            width: 100%;
            height: 100%;
        /* Other styles... */
        }
        h1 {
            text-align: center;
        }
        h2,h3,h4 {
            text-align: justify;
            font-size: 8px;
        }
        st-emotion-cache-1wmy9hl {
            font-size: 8px;
        }
        body {
            color: #fff;
            background-color: #202020;
        }

        .stSlider .css-1cpxqw2 {
            background: #202020;
            color: #fd5137;
        }
        .stSlider .text {
            background: #202020;
            color: #fd5137;
        }
        .stButton > button {
            background-color: #202020;
            width: 60%;
            margin-left: auto;
            margin-right: auto;
            display: block;
            padding: 10px 24px;
            font-size: 16px;
            font-weight: bold;
            border: 1px solid #f8f8f8;
        }
        .stButton > button:hover {
            color: #Fd5137
            border: 1px solid #fd5137;
        }
        .stButton > button:active {
            color: #F8F8F8;
            border: 1px solid #fd5137;
            background-color: #fd5137;
        }
        .reportview-container .main .block-container {
            padding: 0;
            background-color: #202020;
            width: 100%; /* Make the plotly graph take up full width */
        }
        .sidebar .sidebar-content {
            background-image: linear-gradient(#202020,#202020);
            color: white;
            size: 0.2em; /* Make the text in the sidebar smaller */
            padding: 0;
        }
        .reportview-container .main .block-container {
            background-color: #000000;
        }
        .stText {
            padding: 0;
        }
        /* Set the main background color to #202020 */
        .appview-container {
            background-color: #000000;
            padding: 0;
        }
        .stVerticalBlockBorderWrapper{
            padding: 0;
            margin-left: 0px;
        }
        .st-emotion-cache-1cypcdb {
            background-color: #202020;
            background-image: none;
            color: #000000;
            padding: 0;
        }
        .stPlotlyChart {
            background-color: #000000;
            background-image: none;
            color: #000000;
            padding: 0;
        }
        .reportview-container .css-1lcbmhc .css-1outpf7 {
            padding-top: 35px;
        }
        .reportview-container .main .block-container {
            max-width: 100%;
            padding-top: 0rem;
            padding-right: 0rem;
            padding-left: 0rem;
            padding-bottom: 10rem;
        }
        .reportview-container .main {
            color: white;
            background-color: black;
        }
        .st-emotion-cache-1avcm0n {
            color: black;
            background-color: black;
        }
        .st-emotion-cache-z5fcl4 {
            padding-left: 0.1rem;
            padding-right: 0.1rem;
        }
        .st-emotion-cache-z5fcl4 {
            width: 100%;
            padding: 3rem 1rem 1rem;
            min-width: auto;
            max-width: initial;
        }
        .st-emotion-cache-uf99v8 {
            display: flex;
            flex-direction: column;
            width: 100%;
            overflow: hidden;
            -webkit-box-align: center;
            align-items: center;
        }

    </style>
    """

    # Inject custom CSS with markdown
    st.markdown(custom_css, unsafe_allow_html=True)
    st.sidebar.title('arXiv Spatial Search Engine')
    st.sidebar.markdown(
        '<a href="http://dataclysm.xyz" target="_blank" style="display: flex; justify-content: center; padding: 10px;">dataclysm.xyz <img src="https://www.somewhere.systems/S2-white-logo.png" style="width: 8px; height: 8px;"></a>', 
        unsafe_allow_html=True
    )
    # Create a placeholder for the chart
    chart_placeholder = st.empty()
    
    # Check if data needs to be loaded
    if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
        # User input for number of samples
        num_samples = st.sidebar.slider('Select number of samples', 1000, int(round(total_samples/10)), 1000)
        if 'fig' not in st.session_state:
            with open('prayers.txt', 'r') as file:
                lines = file.readlines()
                random_line = random.choice(lines).strip()
            st.session_state.fig = go.Figure(data=[go.Scatter3d(x=[], y=[], z=[], mode='markers')])
            st.session_state.fig.add_annotation(
                x=0.5,
                y=0.5,
                xref="paper",
                yref="paper",
                text=random_line,
                showarrow=False,
                font=dict(
                    size=16,
                    color="black"
                ),
                align="center",
                ax=0,
                ay=0,
                bordercolor="black",
                borderwidth=2,
                borderpad=4,
                bgcolor="white",
                opacity=0.8
            )
            # Set grid opacity to 10%
            st.session_state.fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                           yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                           zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))

            st.session_state.fig.update_layout(
                plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                height=888,
                margin=dict(l=0, r=0, b=0, t=0),
                scene_camera=dict(eye=dict(x=0.1, y=0.1, z=0.1))
            )
        chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)
        if st.sidebar.button('Initialize'):
            st.sidebar.text('Initializing data pipeline...')

            # Define a function to reshape the embeddings and add FAISS index if it doesn't exist
            def reshape_and_add_faiss_index(dataset, column_name):
                
                # Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
                # As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
                # We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
                print(f"Flattening {column_name} and adding FAISS index...")
                # Flatten the embeddings
                dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
                # Add the FAISS index
                dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
                print(f"FAISS index for {column_name} added.")
                
                return dataset
            
            # Load data and perform t-SNE and clustering
            df, embeddings = load_data(num_samples)

            # Combine embeddings and df back into one df
            # Convert embeddings to list of lists before assigning to df
            embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
            df['title_embedding'] = embeddings_list
            # Print the first few rows of the dataframe to check
            print(df.head())
            # Add FAISS indices for 'title_embedding' 
            st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
            tsne_results = perform_tsne(embeddings)
            df = perform_clustering(df, tsne_results)
            # Store results in session state
            st.session_state.df = df
            st.session_state.tsne_results = tsne_results
            st.session_state.data_loaded = True
        
            # Create custom hover text
            df['hovertext'] = df.apply(
                lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
            )
            st.sidebar.text("Datasets loaded, titles indexed.")

            # Create the plot
            fig = go.Figure(data=[go.Scatter3d(
                x=df['tsne-3d-one'],
                y=df['tsne-3d-two'],
                z=df['tsne-3d-three'],
                mode='markers',
                hovertext=df['hovertext'],
                hoverinfo='text',
                marker=dict(
                    size=1,
                    color=df['cluster'],
                    colorscale='Jet',
                    opacity=0.75
                )
            )])
            # Set grid opacity to 10%
            fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                           yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
                                           zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))

            fig.update_layout(
                plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                height=800,
                margin=dict(l=0, r=0, b=0, t=0),
                scene_camera=dict(eye=dict(x=0.1, y=0.1, z=0.1))
            )
            st.session_state.fig = fig

    # Display the plot if data is loaded
    if 'data_loaded' in st.session_state and st.session_state.data_loaded:
        chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)


    # Sidebar for detailed view
    if 'df' in st.session_state:
        # Sidebar for querying
        with st.sidebar:
            st.sidebar.markdown("# Detailed View")
            selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)

            # Display metadata for the selected article
            selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
            st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
            st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
            st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
            st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)

            st.sidebar.markdown("### Find Similar in Latent Space")
            query = st.text_input("", value=selected_row['title'])
            top_k = st.slider("top k", 1, 100, 10)
            if st.button("Search"):
                # Define the model
                print("Initializing model...")
                model = FlagModel('BAAI/bge-small-en-v1.5', 
                                query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
                                use_fp16=True)
                print("Model initialized.")
                
                query_embedding = model.encode([query])
                query_embedding = np.array(query_embedding).reshape(1, -1).astype('float32')
                # Retrieve examples by title similarity (or abstract, depending on your preference)
                scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=top_k)
                df_query = pd.DataFrame(retrieved_examples_title)
                df_query['proximity'] = scores_title
                df_query = df_query.sort_values(by='proximity', ascending=True)
                # Limit similarity score to 3 decimal points
                df_query['proximity'] = df_query['proximity'].round(3)
                # Fix the <a href link> to display properly
                df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
                st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
                # Get the ID of the top search result
                top_result_id = df_query.iloc[0]['id']

                # Update the camera position and appearance of points
                updated_fig = update_camera_position(st.session_state.fig, st.session_state.df, df_query, top_result_id,top_k)

                # Update the figure in the session state and redraw the plot
                st.session_state.fig = updated_fig

                # Update the chart using the placeholder
                chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)

   

if __name__ == "__main__":
    main()