File size: 21,735 Bytes
bcc0116 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f 7ef10db 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de 21bee4f ac664de a7193d8 ac664de a7193d8 ac664de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# Import necessary libraries
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.manifold import TSNE
from datasets import load_dataset, Dataset
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import time, random, datetime
import logging
from sklearn.cluster import HDBSCAN
BACKGROUND_COLOR = 'black'
COLOR = 'white'
def set_page_container_style(
max_width: int = 10000, max_width_100_percent: bool = False,
padding_top: int = 1, padding_right: int = 10, padding_left: int = 1, padding_bottom: int = 10,
color: str = COLOR, background_color: str = BACKGROUND_COLOR,
):
if max_width_100_percent:
max_width_str = f'max-width: 100%;'
else:
max_width_str = f'max-width: {max_width}px;'
st.markdown(
f'''
<style>
.reportview-container .css-1lcbmhc .css-1outpf7 {{
padding-top: 35px;
}}
.reportview-container .main .block-container {{
{max_width_str}
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
.reportview-container .main {{
color: {color};
background-color: {background_color};
}}
</style>
''',
unsafe_allow_html=True,
)
# Additional libraries for querying
from FlagEmbedding import FlagModel
# Global variables and dataset loading
global dataset_name
st.set_page_config(layout="wide")
dataset_name = "somewheresystems/dataclysm-arxiv"
set_page_container_style(
max_width = 1600, max_width_100_percent = True,
padding_top = 0, padding_right = 10, padding_left = 5, padding_bottom = 10
)
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
total_samples = len(st.session_state.dataclysm_arxiv)
logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
# Load the dataset once at the start
# Initialize the model for querying
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)
def load_data(num_samples):
start_time = time.time()
dataset_name = 'somewheresystems/dataclysm-arxiv'
# Load the dataset
logging.info(f'Loading dataset...')
dataset = load_dataset(dataset_name)
total_samples = len(dataset['train'])
logging.info('Converting to pandas dataframe...')
# Convert the dataset to a pandas DataFrame
df = dataset['train'].to_pandas()
# Adjust num_samples if it's more than the total number of samples
num_samples = min(num_samples, total_samples)
st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')
# Randomly sample the dataframe
df = df.sample(n=num_samples)
# Assuming 'embeddings' column contains the embeddings
embeddings = df['title_embedding'].tolist()
print("embeddings length: " + str(len(embeddings)))
# Convert list of lists to numpy array
embeddings = np.array(embeddings, dtype=object)
end_time = time.time() # End timing
st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
return df, embeddings
def perform_tsne(embeddings):
start_time = time.time()
logging.info('Performing t-SNE...')
n_samples = len(embeddings)
perplexity = min(30, n_samples - 1) if n_samples > 1 else 1
# Check if all embeddings have the same length
if len(set([len(embed) for embed in embeddings])) > 1:
raise ValueError("All embeddings should have the same length")
# Dimensionality Reduction with t-SNE
tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)
# Create a placeholder for progress bar
progress_text = st.empty()
progress_text.text("t-SNE in progress...")
tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))
# Update progress bar to indicate completion
progress_text.text(f"t-SNE completed at {datetime.datetime.now()}. Processed {n_samples} samples with perplexity {perplexity}.")
end_time = time.time() # End timing
st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
return tsne_results
def perform_clustering(df, tsne_results):
start_time = time.time()
# Perform DBSCAN clustering
logging.info('Performing HDBSCAN clustering...')
# Step 3: Visualization with Plotly
# Normalize the t-SNE results between 0 and 1
df['tsne-3d-one'] = (tsne_results[:,0] - tsne_results[:,0].min()) / (tsne_results[:,0].max() - tsne_results[:,0].min())
df['tsne-3d-two'] = (tsne_results[:,1] - tsne_results[:,1].min()) / (tsne_results[:,1].max() - tsne_results[:,1].min())
df['tsne-3d-three'] = (tsne_results[:,2] - tsne_results[:,2].min()) / (tsne_results[:,2].max() - tsne_results[:,2].min())
# Perform DBSCAN clustering
hdbscan = HDBSCAN(min_cluster_size=10, min_samples=50)
cluster_labels = hdbscan.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
df['cluster'] = cluster_labels
end_time = time.time() # End timing
st.sidebar.text(f'HDBSCAN clustering completed in {end_time - start_time:.3f} seconds')
return df
def update_camera_position(fig, df, df_query, result_id, K=10):
# Focus the camera on the closest result
top_K_ids = df_query.sort_values(by='proximity', ascending=True).head(K)['id'].tolist()
top_K_proximity = df_query['proximity'].tolist()
top_results = df[df['id'].isin(top_K_ids)]
camera_focus = dict(
eye=dict(x=top_results.iloc[0]['tsne-3d-one']*0.1, y=top_results.iloc[0]['tsne-3d-two']*0.1, z=top_results.iloc[0]['tsne-3d-three']*0.1)
)
# Normalize the proximity values to range between 1 and 10
normalized_proximity = [10 - (10 * (prox - min(top_K_proximity)) / (max(top_K_proximity) - min(top_K_proximity))) for prox in top_K_proximity]
# Create a dictionary mapping id to normalized proximity
id_to_proximity = dict(zip(top_K_ids, normalized_proximity))
# Set marker sizes based on proximity for top K ids, all other points stay the same -- 500% zoom
marker_sizes = [5 * id_to_proximity[id] if id in top_K_ids else 1 for id in df['id']]
# Store the original colors in a separate column
df['color'] = df['cluster']
fig = go.Figure(data=[go.Scatter3d(
x=df['tsne-3d-one'],
y=df['tsne-3d-two'],
z=df['tsne-3d-three'],
mode='markers',
marker=dict(size=marker_sizes, color=df['color'], colorscale='Viridis', opacity=0.8, line_width=0),
hovertext=df['hovertext'],
hoverinfo='text',
)])
# Set grid opacity to 10%
fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))
# Add lines stemming from the first point to all other points in the top K
for i in range(1, K): # there are K-1 lines from the first point to the other K-1 points
fig.add_trace(go.Scatter3d(
x=[top_results.iloc[0]['tsne-3d-one'], top_results.iloc[i]['tsne-3d-one']],
y=[top_results.iloc[0]['tsne-3d-two'], top_results.iloc[i]['tsne-3d-two']],
z=[top_results.iloc[0]['tsne-3d-three'], top_results.iloc[i]['tsne-3d-three']],
mode='lines',
line=dict(color='white',width=0.3), # Set line opacity to 50%
showlegend=True,
name="centroid" if i == -1 else top_results.iloc[i]['id'], # Set the legend to "Top Result" for the first entry, and to the title of the article for the rest
hovertext=f'Title: Top K Results\nID: {top_K_ids[i]}, Proximity: {round(top_K_proximity[i], 4)}',
hoverinfo='text',
))
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
scene_camera=camera_focus)
return fig
def main():
# Custom CSS
custom_css = """
<style>
/* Define the font */
@font-face {
font-family: 'F';
src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
}
/* Apply the font to all elements */
* {
font-family: 'F', sans-serif !important;
color: #F8F8F8; /* Set the font color to F8F8F8 */
}
/* Add your CSS styles here */
.stPlotlyChart {
width: 100%;
height: 100%;
/* Other styles... */
}
h1 {
text-align: center;
}
h2,h3,h4 {
text-align: justify;
font-size: 8px;
}
st-emotion-cache-1wmy9hl {
font-size: 8px;
}
body {
color: #fff;
background-color: #202020;
}
.stSlider .css-1cpxqw2 {
background: #202020;
color: #fd5137;
}
.stSlider .text {
background: #202020;
color: #fd5137;
}
.stButton > button {
background-color: #202020;
width: 60%;
margin-left: auto;
margin-right: auto;
display: block;
padding: 10px 24px;
font-size: 16px;
font-weight: bold;
border: 1px solid #f8f8f8;
}
.stButton > button:hover {
color: #Fd5137
border: 1px solid #fd5137;
}
.stButton > button:active {
color: #F8F8F8;
border: 1px solid #fd5137;
background-color: #fd5137;
}
.reportview-container .main .block-container {
padding: 0;
background-color: #202020;
width: 100%; /* Make the plotly graph take up full width */
}
.sidebar .sidebar-content {
background-image: linear-gradient(#202020,#202020);
color: white;
size: 0.2em; /* Make the text in the sidebar smaller */
padding: 0;
}
.reportview-container .main .block-container {
background-color: #000000;
}
.stText {
padding: 0;
}
/* Set the main background color to #202020 */
.appview-container {
background-color: #000000;
padding: 0;
}
.stVerticalBlockBorderWrapper{
padding: 0;
margin-left: 0px;
}
.st-emotion-cache-1cypcdb {
background-color: #202020;
background-image: none;
color: #000000;
padding: 0;
}
.stPlotlyChart {
background-color: #000000;
background-image: none;
color: #000000;
padding: 0;
}
.reportview-container .css-1lcbmhc .css-1outpf7 {
padding-top: 35px;
}
.reportview-container .main .block-container {
max-width: 100%;
padding-top: 0rem;
padding-right: 0rem;
padding-left: 0rem;
padding-bottom: 10rem;
}
.reportview-container .main {
color: white;
background-color: black;
}
.st-emotion-cache-1avcm0n {
color: black;
background-color: black;
}
.st-emotion-cache-z5fcl4 {
padding-left: 0.1rem;
padding-right: 0.1rem;
}
.st-emotion-cache-z5fcl4 {
width: 100%;
padding: 3rem 1rem 1rem;
min-width: auto;
max-width: initial;
}
.st-emotion-cache-uf99v8 {
display: flex;
flex-direction: column;
width: 100%;
overflow: hidden;
-webkit-box-align: center;
align-items: center;
}
</style>
"""
# Inject custom CSS with markdown
st.markdown(custom_css, unsafe_allow_html=True)
st.sidebar.title('arXiv Spatial Search Engine')
st.sidebar.markdown(
'<a href="http://dataclysm.xyz" target="_blank" style="display: flex; justify-content: center; padding: 10px;">dataclysm.xyz <img src="https://www.somewhere.systems/S2-white-logo.png" style="width: 8px; height: 8px;"></a>',
unsafe_allow_html=True
)
# Create a placeholder for the chart
chart_placeholder = st.empty()
# Check if data needs to be loaded
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
# User input for number of samples
num_samples = st.sidebar.slider('Select number of samples', 1000, int(round(total_samples/10)), 1000)
if 'fig' not in st.session_state:
with open('prayers.txt', 'r') as file:
lines = file.readlines()
random_line = random.choice(lines).strip()
st.session_state.fig = go.Figure(data=[go.Scatter3d(x=[], y=[], z=[], mode='markers')])
st.session_state.fig.add_annotation(
x=0.5,
y=0.5,
xref="paper",
yref="paper",
text=random_line,
showarrow=False,
font=dict(
size=16,
color="black"
),
align="center",
ax=0,
ay=0,
bordercolor="black",
borderwidth=2,
borderpad=4,
bgcolor="white",
opacity=0.8
)
# Set grid opacity to 10%
st.session_state.fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))
st.session_state.fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
height=888,
margin=dict(l=0, r=0, b=0, t=0),
scene_camera=dict(eye=dict(x=0.1, y=0.1, z=0.1))
)
chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)
if st.sidebar.button('Initialize'):
st.sidebar.text('Initializing data pipeline...')
# Define a function to reshape the embeddings and add FAISS index if it doesn't exist
def reshape_and_add_faiss_index(dataset, column_name):
# Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
# As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
# We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
print(f"Flattening {column_name} and adding FAISS index...")
# Flatten the embeddings
dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
# Add the FAISS index
dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
print(f"FAISS index for {column_name} added.")
return dataset
# Load data and perform t-SNE and clustering
df, embeddings = load_data(num_samples)
# Combine embeddings and df back into one df
# Convert embeddings to list of lists before assigning to df
embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
df['title_embedding'] = embeddings_list
# Print the first few rows of the dataframe to check
print(df.head())
# Add FAISS indices for 'title_embedding'
st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
tsne_results = perform_tsne(embeddings)
df = perform_clustering(df, tsne_results)
# Store results in session state
st.session_state.df = df
st.session_state.tsne_results = tsne_results
st.session_state.data_loaded = True
# Create custom hover text
df['hovertext'] = df.apply(
lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
)
st.sidebar.text("Datasets loaded, titles indexed.")
# Create the plot
fig = go.Figure(data=[go.Scatter3d(
x=df['tsne-3d-one'],
y=df['tsne-3d-two'],
z=df['tsne-3d-three'],
mode='markers',
hovertext=df['hovertext'],
hoverinfo='text',
marker=dict(
size=1,
color=df['cluster'],
colorscale='Jet',
opacity=0.75
)
)])
# Set grid opacity to 10%
fig.update_layout(scene = dict(xaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
yaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)'),
zaxis = dict(gridcolor='rgba(128, 128, 128, 0.1)', color='rgba(128, 128, 128, 0.1)')))
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
height=800,
margin=dict(l=0, r=0, b=0, t=0),
scene_camera=dict(eye=dict(x=0.1, y=0.1, z=0.1))
)
st.session_state.fig = fig
# Display the plot if data is loaded
if 'data_loaded' in st.session_state and st.session_state.data_loaded:
chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)
# Sidebar for detailed view
if 'df' in st.session_state:
# Sidebar for querying
with st.sidebar:
st.sidebar.markdown("# Detailed View")
selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)
# Display metadata for the selected article
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
st.sidebar.markdown("### Find Similar in Latent Space")
query = st.text_input("", value=selected_row['title'])
top_k = st.slider("top k", 1, 100, 10)
if st.button("Search"):
# Define the model
print("Initializing model...")
model = FlagModel('BAAI/bge-small-en-v1.5',
query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
use_fp16=True)
print("Model initialized.")
query_embedding = model.encode([query])
query_embedding = np.array(query_embedding).reshape(1, -1).astype('float32')
# Retrieve examples by title similarity (or abstract, depending on your preference)
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=top_k)
df_query = pd.DataFrame(retrieved_examples_title)
df_query['proximity'] = scores_title
df_query = df_query.sort_values(by='proximity', ascending=True)
# Limit similarity score to 3 decimal points
df_query['proximity'] = df_query['proximity'].round(3)
# Fix the <a href link> to display properly
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
# Get the ID of the top search result
top_result_id = df_query.iloc[0]['id']
# Update the camera position and appearance of points
updated_fig = update_camera_position(st.session_state.fig, st.session_state.df, df_query, top_result_id,top_k)
# Update the figure in the session state and redraw the plot
st.session_state.fig = updated_fig
# Update the chart using the placeholder
chart_placeholder.plotly_chart(st.session_state.fig, use_container_width=True)
if __name__ == "__main__":
main() |