dataclysm / app.py
somewheresy's picture
Upload 4 files
21bee4f verified
raw
history blame
11.4 kB
# Import necessary libraries
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.manifold import TSNE
from datasets import load_dataset, Dataset
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import time
import logging
# Additional libraries for querying
from FlagEmbedding import FlagModel
# Global variables and dataset loading
global dataset_name
dataset_name = 'somewheresystems/dataclysm-arxiv'
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
total_samples = len(st.session_state.dataclysm_arxiv)
logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
# Load the dataset once at the start
# Initialize the model for querying
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)
def load_data(num_samples):
start_time = time.time()
dataset_name = 'somewheresystems/dataclysm-arxiv'
# Load the dataset
logging.info(f'Loading dataset...')
dataset = load_dataset(dataset_name)
total_samples = len(dataset['train'])
logging.info('Converting to pandas dataframe...')
# Convert the dataset to a pandas DataFrame
df = dataset['train'].to_pandas()
# Adjust num_samples if it's more than the total number of samples
num_samples = min(num_samples, total_samples)
st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')
# Randomly sample the dataframe
df = df.sample(n=num_samples)
# Assuming 'embeddings' column contains the embeddings
embeddings = df['title_embedding'].tolist()
print("embeddings length: " + str(len(embeddings)))
# Convert list of lists to numpy array
embeddings = np.array(embeddings, dtype=object)
end_time = time.time() # End timing
st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
return df, embeddings
def perform_tsne(embeddings):
start_time = time.time()
logging.info('Performing t-SNE...')
n_samples = len(embeddings)
perplexity = min(30, n_samples - 1) if n_samples > 1 else 1
# Check if all embeddings have the same length
if len(set([len(embed) for embed in embeddings])) > 1:
raise ValueError("All embeddings should have the same length")
# Dimensionality Reduction with t-SNE
tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)
# Create a placeholder for progress bar
progress_text = st.empty()
progress_text.text("t-SNE in progress...")
tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))
# Update progress bar to indicate completion
progress_text.text(f"t-SNE completed. Processed {n_samples} samples with perplexity {perplexity}.")
end_time = time.time() # End timing
st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
return tsne_results
def perform_clustering(df, tsne_results):
start_time = time.time()
# Perform KMeans clustering
logging.info('Performing k-means clustering...')
# Step 3: Visualization with Plotly
df['tsne-3d-one'] = tsne_results[:,0]
df['tsne-3d-two'] = tsne_results[:,1]
df['tsne-3d-three'] = tsne_results[:,2]
# Perform KMeans clustering
kmeans = KMeans(n_clusters=16) # Change the number of clusters as needed
df['cluster'] = kmeans.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
end_time = time.time() # End timing
st.sidebar.text(f'k-means clustering completed in {end_time - start_time:.3f} seconds')
return df
def main():
# Custom CSS
custom_css = """
<style>
/* Define the font */
@font-face {
font-family: 'F';
src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
}
/* Apply the font to all elements */
* {
font-family: 'F', sans-serif !important;
color: #F8F8F8; /* Set the font color to F8F8F8 */
}
/* Add your CSS styles here */
h1 {
text-align: center;
}
h2,h3,h4 {
text-align: justify;
font-size: 8px
}
body {
text-align: justify;
}
.stSlider .css-1cpxqw2 {
background: #202020;
}
.stButton > button {
background-color: #202020;
width: 100%;
border: none;
padding: 10px 24px;
border-radius: 5px;
font-size: 16px;
font-weight: bold;
}
.reportview-container .main .block-container {
padding: 2rem;
background-color: #202020;
}
</style>
"""
# Inject custom CSS with markdown
st.markdown(custom_css, unsafe_allow_html=True)
st.sidebar.markdown(
f'<img src="https://www.somewhere.systems/S2-white-logo.png" style="float: bottom-left; width: 32px; height: 32px; opacity: 1.0; animation: fadein 2s;">',
unsafe_allow_html=True
)
st.sidebar.title('Spatial Search Engine')
# Check if data needs to be loaded
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
# User input for number of samples
num_samples = st.sidebar.slider('Select number of samples', 1000, total_samples, 1000)
if st.sidebar.button('Initialize'):
st.sidebar.text('Initializing data pipeline...')
# Define a function to reshape the embeddings and add FAISS index if it doesn't exist
def reshape_and_add_faiss_index(dataset, column_name):
# Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
# As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
# We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
print(f"Flattening {column_name} and adding FAISS index...")
# Flatten the embeddings
dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
# Add the FAISS index
dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
print(f"FAISS index for {column_name} added.")
return dataset
# Load data and perform t-SNE and clustering
df, embeddings = load_data(num_samples)
# Combine embeddings and df back into one df
# Convert embeddings to list of lists before assigning to df
embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
df['title_embedding'] = embeddings_list
# Print the first few rows of the dataframe to check
print(df.head())
# Add FAISS indices for 'title_embedding'
st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
tsne_results = perform_tsne(embeddings)
df = perform_clustering(df, tsne_results)
# Store results in session state
st.session_state.df = df
st.session_state.tsne_results = tsne_results
st.session_state.data_loaded = True
# Create custom hover text
df['hovertext'] = df.apply(
lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
)
st.sidebar.text("Datasets loaded, titles indexed.")
# Create the plot
fig = go.Figure(data=[go.Scatter3d(
x=df['tsne-3d-one'],
y=df['tsne-3d-two'],
z=df['tsne-3d-three'],
mode='markers',
hovertext=df['hovertext'],
hoverinfo='text',
marker=dict(
size=1,
color=df['cluster'],
colorscale='Viridis',
opacity=0.8
)
)])
fig.update_layout(
plot_bgcolor='#202020',
height=800,
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
xaxis=dict(showbackground=True, backgroundcolor="#000000"),
yaxis=dict(showbackground=True, backgroundcolor="#000000"),
zaxis=dict(showbackground=True, backgroundcolor="#000000"),
),
scene_camera=dict(eye=dict(x=0.001, y=0.001, z=0.001))
)
st.session_state.fig = fig
# Display the plot if data is loaded
if 'data_loaded' in st.session_state and st.session_state.data_loaded:
st.plotly_chart(st.session_state.fig, use_container_width=True)
# Sidebar for detailed view
if 'df' in st.session_state:
# Sidebar for querying
with st.sidebar:
st.sidebar.markdown("### Query Embeddings")
query = st.text_input("Enter your query:")
if st.button("Search"):
# Define the model
print("Initializing model...")
model = FlagModel('BAAI/bge-small-en-v1.5',
query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
use_fp16=True)
print("Model initialized.")
query_embedding = model.encode([query])
# Retrieve examples by title similarity (or abstract, depending on your preference)
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=10)
df_query = pd.DataFrame(retrieved_examples_title)
df_query['proximity'] = scores_title
df_query = df_query.sort_values(by='proximity', ascending=True)
# Limit similarity score to 3 decimal points
df_query['proximity'] = df_query['proximity'].round(3)
# Fix the <a href link> to display properly
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
st.sidebar.markdown("# Detailed View")
selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)
# Display metadata for the selected article
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
if __name__ == "__main__":
main()