File size: 2,849 Bytes
f63e6d3
ab202ed
b137505
 
f63e6d3
ab202ed
f63e6d3
b137505
 
d9e18fa
 
b137505
 
 
 
 
 
 
 
d9e18fa
 
 
 
 
 
 
 
 
 
 
b137505
ab202ed
b137505
d9e18fa
ab202ed
419e9e5
ab202ed
419e9e5
 
 
 
 
 
 
 
 
 
 
ab202ed
 
c6b7813
 
 
 
 
 
419e9e5
 
c6b7813
 
5275606
ab202ed
0957a23
ab202ed
419e9e5
6568a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419e9e5
 
 
 
 
6568a70
419e9e5
 
6568a70
419e9e5
 
 
d9e18fa
419e9e5
 
9888af9
e0fa73b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import cv2
import requests
import os

from ultralytics import YOLO

file_urls = [
    'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
    'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
    'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
]

def download_file(url, save_name):
    url = url
    if not os.path.exists(save_name):
        file = requests.get(url)
        open(save_name, 'wb').write(file.content)

for i, url in enumerate(file_urls):
    if 'mp4' in file_urls[i]:
        download_file(
            file_urls[i],
            f"video.mp4"
        )
    else:
        download_file(
            file_urls[i],
            f"image_{i}.jpg"
        )

model = YOLO('best.pt')
path  = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]

def show_preds_image(image_path):
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path)
    results = outputs[0].cpu().numpy()
    for i, det in enumerate(results.boxes.xyxy):
        cv2.rectangle(
            image,
            (int(det[0]), int(det[1])),
            (int(det[2]), int(det[3])),
            color=(0, 0, 255),
            thickness=2,
            lineType=cv2.LINE_AA
        )
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
    fn=show_preds_image,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Pothole detector app",
    examples=path,
    cache_examples=False,
)

def show_preds_video(video_path):
    cap = cv2.VideoCapture(video_path)
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret:
            frame_copy = frame.copy()
            outputs = model.predict(source=frame)
            results = outputs[0].cpu().numpy()
            for i, det in enumerate(results.boxes.xyxy):
                cv2.rectangle(
                    frame_copy,
                    (int(det[0]), int(det[1])),
                    (int(det[2]), int(det[3])),
                    color=(0, 0, 255),
                    thickness=2,
                    lineType=cv2.LINE_AA
                )
            yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)

inputs_video = [
    gr.components.Video(type="filepath", label="Input Video"),

]
outputs_video = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_video = gr.Interface(
    fn=show_preds_video,
    inputs=inputs_video,
    outputs=outputs_video,
    title="Pothole detector",
    examples=video_path,
    cache_examples=False,
)

gr.TabbedInterface(
    [interface_image, interface_video],
    tab_names=['Image inference', 'Video inference']
).queue().launch()