Spaces:
Running
Running
import gradio as gr | |
from gradio.outputs import Label | |
import cv2 | |
from ultralytics import YOLO | |
model = YOLO('best.pt') | |
path = [['pothole_screenshot.png']] | |
def show_preds(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path, return_outputs=True) | |
for image_id, result in enumerate(outputs): | |
print(result['det']) | |
for i, det in enumerate(result['det']): | |
print(det) | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
gr_interface = gr.Interface( | |
fn=show_preds, | |
inputs=gr.inputs.Image(type="filepath", label="Input Image"), | |
outputs=gr.outputs.Image(type="numpy", label="Output Image"), | |
title="Pothole detector", | |
examples=path, | |
) | |
gr_interface.launch(inline=False, share=False, debug=True) |