sovitrath's picture
App
ab202ed
raw
history blame
1.03 kB
import gradio as gr
from gradio.outputs import Label
import cv2
from ultralytics import YOLO
model = YOLO('best.pt')
path = [['pothole_screenshot.png']]
def show_preds(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path, return_outputs=True)
for image_id, result in enumerate(outputs):
print(result['det'])
for i, det in enumerate(result['det']):
print(det)
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gr_interface = gr.Interface(
fn=show_preds,
inputs=gr.inputs.Image(type="filepath", label="Input Image"),
outputs=gr.outputs.Image(type="numpy", label="Output Image"),
title="Pothole detector",
examples=path,
)
gr_interface.launch(inline=False, share=False, debug=True)